【題目】已知:如圖AB是⊙O的直徑,AC是弦,直線EF是過點(diǎn)C的⊙O的切線,AD⊥EF于點(diǎn)D.
(1)求證:∠BAC=∠CAD;
(2)若∠B=30°,AB=12,求AC的長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明上周零花錢使用情況:(規(guī)定:超過50元記為正,少于50元記為負(fù))
星期一 | 星期二 | 星期三 | 星期四 | 星期五 |
+11 | +10 | ﹣17 | +18 | ﹣12 |
請(qǐng)你解答以下問題:
(1)上星期五小明用了多少零花錢;
(2)上星期四比上星期三多花了多少零花錢;
(3)求上周平均每天用多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)B,C,D在同一條直線上,∠B=∠D=90°,△ABC≌△CDE,AB=6,BC=8,CE=10.
(1)求△ABC的周長(zhǎng);
(2)求△ACE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個(gè)工程隊(duì)分別同時(shí)開挖兩段河渠,所挖河渠的長(zhǎng)度y(m)與挖掘時(shí)間x(h)之間的關(guān)系如圖所示.根據(jù)圖象所提供的信息,下列說法正確的是( )
A. 甲隊(duì)開挖到30 m時(shí),用了2 h
B. 開挖6 h時(shí),甲隊(duì)比乙隊(duì)多挖了60 m
C. 乙隊(duì)在0≤x≤6的時(shí)段,y與x之間的關(guān)系式為y=5x+20
D. 當(dāng)x為4 h時(shí),甲、乙兩隊(duì)所挖河渠的長(zhǎng)度相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OE∥AB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得與的長(zhǎng),然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
(1)數(shù)軸上表示5與﹣2兩點(diǎn)之間的距離是 ,
(2)數(shù)軸上表示x與2的兩點(diǎn)之間的距離可以表示為 .
(3)如果|x﹣2|=5,則x= .
(4)同理|x+3|+|x﹣1|表示數(shù)軸上有理數(shù)x所對(duì)應(yīng)的點(diǎn)到﹣3和1所對(duì)應(yīng)的點(diǎn)的距離之和,請(qǐng)你找出所有符合條件的整數(shù)x,使得|x+3|+|x﹣1|=4,這樣的整數(shù)是 .
(5)由以上探索猜想對(duì)于任何有理數(shù)x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接寫出最小值;如果沒有,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下表中的信息解決問題:
若該組數(shù)據(jù)的中位數(shù)不大于38,則符合條件的正數(shù)的取值共有( )
A. 3個(gè) B. 4個(gè) C. 5個(gè) D. 6個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一筆直的海岸線上有兩個(gè)觀測(cè)站,,從測(cè)得船
在北偏東的方向,從測(cè)得船在北偏東的方向,求船離海岸線的距離(即的長(zhǎng)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖兩摞規(guī)格完全相同的課本整齊地疊放在講臺(tái)上請(qǐng)根據(jù)圖中所給出的數(shù)據(jù)信息,回答下列問題:
(1)每本課本的厚度為 cm.
(2)若有一摞上述規(guī)格的課本x本整齊地疊放在講臺(tái)上請(qǐng)用含x的代數(shù)式表示出這摞課本的頂部距離地面的高度;
(3)當(dāng)x=42時(shí),求課本的頂部距離地面的高度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com