【題目】如圖,直線相交于點平分.
(1)若,求的度數(shù);(2)若,求的度數(shù)。
【答案】(1)20°;(2)60°.
【解析】
(1)根據(jù)鄰補角的定義得到∠AOF=180°-∠AOE,根據(jù)角平分線的定義得到∠AOC=∠AOF,根據(jù)角的和差即可得到結(jié)論;
(2)首先求出∠AOE,然后根據(jù)鄰補角的定義得到∠AOF=180°-∠AOE,根據(jù)角平分線的定義得到∠AOC=∠AOF,根據(jù)角的和差即可得到結(jié)論.
解:(1)∵∠AOE=40°,
∴∠AOF=180°-∠AOE=140°,
∵OC平分∠AOF,
∴∠AOC=∠AOF=70°,
∵OA⊥OB,
∴∠AOB=90°,
∴∠BOD=180°-∠AOB-∠AOC=20°;
(2)∵∠BOE=30°,OA⊥OB,
∴∠AOE=60°,
∴∠AOF=180°-∠AOE=120°,
∵OC平分∠AOF,
∴∠AOC=∠AOF=60°,
∴∠COE=∠AOE+∠AOC=60°+60°=120°,
∴∠DOE=180°-∠COE=60°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長江汛期即將來臨,為便于夜間查看江水及兩岸河堤的情況,防汛指揮部在一危險地帶兩岸各安置了一探照燈(如圖1),∠BAN=45°.燈A射線自AM順時針旋轉(zhuǎn)至AN便立即回轉(zhuǎn),燈B射線自BP順時針旋轉(zhuǎn)至BQ便立即回轉(zhuǎn),兩燈不停交叉照射巡視.若燈A轉(zhuǎn)動的速度是3度/秒,燈B轉(zhuǎn)動的速度是1度/秒.假定這一帶長江兩岸河堤是平行的,即PQ∥MN.如圖2,兩燈同時轉(zhuǎn)動,在燈A射線到達(dá)AN之前.若射出的光束交于點C,過C作CD⊥AC交PQ于點D,則在轉(zhuǎn)動過程中,求∠BAC與∠BCD的比值,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,DE垂直平分AB于E,交AC于D,連接BD.
(1)如果∠A=40°,求∠CBD的度數(shù);
(2)若AB=AC=9cm,BC=5cm,求△BCD的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的推理填空
如圖,已知是的角平分線,,試證明:.
證明:
是的角平分線(已知)
___________( )
又(已知)
___________( )
___________( )
___________( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】嘉嘉和琪琪在用一副三角尺研究數(shù)學(xué)問題:
一副三角尺分別有一個角為直角,其余角度如圖1所示,.
發(fā)現(xiàn):
(1)如圖2,當(dāng)與重合時,_____.
(2)如圖3,將圖2中繞點順時針旋轉(zhuǎn)一定角度使得,求的度數(shù).
拓展:
(3)如圖4,繼續(xù)旋轉(zhuǎn),使得于點,
①此時與平行嗎?請說明理由.
②求的度數(shù).
探究:
(4)如圖5、圖6,繼續(xù)旋轉(zhuǎn),使得,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,有點.
(1)若線段軸,求點的坐標(biāo)
(2)當(dāng)點到軸的距離是到軸的距離的倍時,求點所在的象限位置
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】聲音在空氣中的傳播速度y(m/s)隨氣溫x(℃)的變化而變化.下表給出了一組不同氣溫下聲音傳播的速度:
x(℃) | 0 | 5 | 10 | 15 | 20 | 25 |
y(m/s) | 331 | 334 | 337 | 340 | 343 | 346 |
(1)當(dāng)x的值為35時,求對應(yīng)的y的值;
(2)求y與x的關(guān)系式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com