【題目】如圖的平分線交于點的延長線交于點.

1)求證:;

2)如果,那么等于多少度?

【答案】(1)見解析;(2)120°.

【解析】

1)依據(jù)平行線的性質(zhì),以及角平分線的定義,即可得到∠1+2=(∠ABD+BDC),進而得出結(jié)論;
2)依據(jù)角平分線定義以及(1)中的結(jié)論,即可得出∠1=60°,再根據(jù)平行線的性質(zhì),即可得到∠BFC的度數(shù).

1)證明:∵ABCD,
∴∠ABD+BDC=180°,
BE、DE分別平分∠ABD、∠BDC,
∴∠1=ABD,∠2=BDC,
∴∠1+2=(∠ABD+BDC=90°,
2)解:∵DE平分∠BDC,BF平分∠ABD,
∴∠2=EDF=30°,∠1=FBD,
又∵∠1+2=90°,
∴∠1=60°,

ABCD,

∴∠BFC=180°-1=180°-60°=120°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】對于平面直角坐標系中的圖形M和點P(點PM內(nèi)部或M上),給出如下定義:

如果圖形M上存在點Q,使得,那么稱點P為圖形M的和諧點.

已知點,,

1)在點,中,矩形的和諧點是_________________;

2)如果直線上存在矩形的和諧點P,求出點P的橫坐標t的取值范圍;

3)如果直線上存在矩形的和諧點E,F,使得線段上的所有點(含端點)都是矩形的和諧點,且,求出b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某企業(yè)前年按可回收垃圾處理費15/噸、不可回收垃圾處理費25/噸的收費標準,共支付兩種垃圾處理費5000元,從去年元月起,收費標準上調(diào)為:可回收垃圾處理費30/噸,不可回收垃圾處理費100/噸.若該企業(yè)去年處理的這兩種垃圾數(shù)量與前年相比沒有變化,但調(diào)價后就要多支付處理費9000元.

(1)該企業(yè)前年處理的可回收垃圾和不可回收垃圾各多少噸?

(2)該企業(yè)計劃今年將上述兩種垃圾處理總量減少到200噸,且可回收垃圾不少于不可回收垃圾處理量的3倍,則今年該企業(yè)至少有多少噸可回收垃圾?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線相交于點平分.

1)若,求的度數(shù);(2)若,求的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地震救援隊探測出某建筑物廢墟下方點C處有生命跡象,已知廢墟一側(cè)地面上兩探測點AB相距3米,探測線與地面的夾角分別是30°60°(如圖),試確定生命所在點C的深度.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有若干個僅顏色不同的紅球和黑球,現(xiàn)往一個不透明的袋子里裝進4個紅球和6個黑球.

1)若先從袋子里取出m個紅球(不放回),再從袋子里隨機摸出一個球,將摸到黑球記為事件A. 若事件A為必然事件,則m= .

2)若先從袋子里取出n個黑球,再放入2n個紅球,若隨機摸出一個球是紅球的概率等于2/3,通過計算求n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為開展全科大閱讀活動,學;ㄙM了3400元在書店購買了40套古典文學書籍和20套現(xiàn)代文學書籍,每套現(xiàn)代文學書籍比每套古典文學書籍多花20.

1)求每套古典文學習書籍和現(xiàn)代文學書籍分別是多少元?

2)為滿足學生的閱讀需求,學校計劃用不超過2500元再次購買古典文學和現(xiàn)代文學書籍共40套,經(jīng)市場調(diào)查得知,每套古典文學書籍價格上浮了20%,每套現(xiàn)代文學書籍價格下調(diào)了10%,學校最多能購買多少套現(xiàn)代文學書籍?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,對角線AC、BD相交于點O,DHAB于點H,連接OH,∠CAD=35°,則∠HOB的度數(shù)為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】周末,小梅騎自行車去外婆家,從家出發(fā)小時后到達甲地,在甲地游玩一段時間后,按原速繼續(xù)前進,小梅出發(fā)小時后,爸爸騎摩托車沿小梅騎自行車的路線追趕小梅,如圖是他們離家的路程(千米)與小梅離家時間(小時)的關系圖,已知爸爸騎摩托車的速度是小梅騎自行車速度的倍。

1)小梅在甲地游玩時間是_________小時,小梅騎車的速度是_________千米/小時.

2)若爸爸與小梅同時到達外婆家,求小梅家到外婆家的路程.

查看答案和解析>>

同步練習冊答案