函數(shù)關(guān)系式y(tǒng)=
5-x
x+2
中自變量x的取值范圍是( 。
A、x≤5
B、x<5且x≠2
C、x≤5且x≠-2
D、x≥5且x≠-2
分析:根據(jù)二次根式的性質(zhì)和分式的意義,被開方數(shù)大于等于0,分母不等于0,可以求出x的范圍.
解答:解:根據(jù)題意得:5-x≥0且x+2≠0,
解得:x≤5且x≠-2
故選C.
點(diǎn)評(píng):函數(shù)自變量的范圍一般從三個(gè)方面考慮:
(1)當(dāng)函數(shù)表達(dá)式是整式時(shí),自變量可取全體實(shí)數(shù);
(2)當(dāng)函數(shù)表達(dá)式是分式時(shí),考慮分式的分母不能為0;
(3)當(dāng)函數(shù)表達(dá)式是二次根式時(shí),被開方數(shù)為非負(fù)數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)近視眼鏡的度數(shù)y(度)與鏡片焦距x(米)成反比例,已知400度近視眼鏡鏡片的焦距為0.25米,則眼鏡度數(shù)y與鏡片焦距x之間的函數(shù)關(guān)系式為
 
.(無需確定x的取值范圍)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知拋物線y=ax2+bx+c經(jīng)過點(diǎn)A(5,0)、B(6,-6)和原點(diǎn).
(1)求拋物線的函數(shù)關(guān)系式;
(2)若過點(diǎn)B的直線y=kx+b與拋物線交于點(diǎn)C(2,m),請求出△OBC的面積S的值;
(3)過點(diǎn)C作平行于x軸的直線交y軸于點(diǎn)D,在拋物線對稱軸右側(cè)位于直線DC下方的拋物線上,任取一點(diǎn)P,過點(diǎn)P作直線PF平行于y軸交x軸于點(diǎn)F,交直線DC于點(diǎn)E.直線PF與直線DC及兩坐標(biāo)軸圍成矩形OFED,是否存在點(diǎn)P,使得△OCD與△CPE相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

老師在一直角坐標(biāo)系中畫了一個(gè)反比例函數(shù)的圖象和正比例函數(shù),請同學(xué)們觀察有什么特點(diǎn),并說出來.同學(xué)甲:與直線有兩個(gè)交點(diǎn);同學(xué)乙:圖象上任意一點(diǎn)到兩坐標(biāo)軸的距離的積都是4.請根據(jù)同學(xué)甲和乙的說法寫出反比例函數(shù)關(guān)系式
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時(shí)出發(fā),設(shè)慢車行駛的時(shí)間為x(h),兩車之間的距離為y(km),圖中的折線表示y與x之間的函數(shù)關(guān)系.根據(jù)圖象進(jìn)行以下探究:精英家教網(wǎng)
信息讀取:
(1)甲、乙兩地之間的距離為
 
km;
(2)請解釋圖中點(diǎn)B的實(shí)際意義;
圖象理解:
(3)求慢車和快車的速度;
(4)求線段BC所表示的y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
問題解決:
(5)若第二列快車也從甲地出發(fā)駛往乙地,速度與第一列快車相同.在第一列快車與慢車相遇30分鐘后,第二列快車與慢車相遇.求第二列快車比第一列快車晚出發(fā)多少小時(shí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)某服裝公司銷售一種成本為每件50元的T恤衫,發(fā)現(xiàn)銷售量y(件)與銷售單價(jià)x(元)的關(guān)系可以近似的看作一次函數(shù)(如圖).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)設(shè)公司獲得的總利潤(總利潤=總銷售額-總成本)為P元,求P與x之間的函數(shù)關(guān)系式,并根據(jù)題意判斷:當(dāng)x取何值時(shí),P的值最大?最大值是多少?

查看答案和解析>>

同步練習(xí)冊答案