【題目】如圖,在Rt△ACB中,∠C=90°,AC=3,BC=4,O是BC的中點,到點O的距離等于BC的所有點組成的圖形記為G,圖形G與AB交于點D.
(1)補全圖形并求線段AD的長;
(2)點E是線段AC上的一點,當(dāng)點E在什么位置時,直線ED與 圖形G有且只有一個交點?請說明理由.
【答案】(1)補全圖形見解析;AD=;(2)當(dāng)點E是AC的中點時,ED與圖形G(⊙O)有且只有一個交點.證明見解析.
【解析】
(1)由勾股定理易求得AB的長;可連接CD,由圓周角定理知CD⊥AB,易知 ,可得關(guān)于AC. AD.AB的比例關(guān)系式,即可求出AD的長度;
(2)當(dāng)ED與 相切時,由切線長定理知EC=ED,則∠ECD=∠EDC,那么∠A和∠DEC就是等角的余角,由此可證得AE=DE,即E是AC的中點、在證明時,可連接OD,證OD⊥DE即可.
(1)依題意畫出⊙O,如圖所示.
在Rt△ACB中,
∵AC=3,BC=4,∠ACB=90°,
∴AB=5.
連接CD,
∵BC為直徑,
∴∠ADC=∠BDC=90°.
∵∠A=∠A,∠ADC=∠ACB,
∴Rt△ADC∽Rt△ACB.
∴ .
∴ .
(2)當(dāng)點E是AC的中點時,ED與圖形G(⊙O)有且只有一個交點.
證明:連接OD,
∵DE是Rt△ADC斜邊上的中線,
∴ED=EC.
∴∠EDC=∠ECD.
∵OC=OD,
∴∠ODC=∠OCD.
∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°.
∴ED⊥OD.
∴ED與⊙O相切.
∴直線ED與圖形G(⊙O)有且只有一個交點.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】孫老師在上《等可能事件的概率》這節(jié)課時,給同學(xué)們提出了一個問題:“如果同時隨機投擲兩枚質(zhì)地均勻的骰子,它們朝上一面的點數(shù)和是多少的可能性最大?”同學(xué)們展開討論,各抒己見,其中小芳和小超兩位同學(xué)給出了兩種不同的回答.小芳認(rèn)為6的可能性最大,小超認(rèn)為7的可能性最大.你認(rèn)為他們倆的回答正確嗎?請用列表或畫樹狀圖等方法加以說明.(骰子:六個面上分別刻有1,2,3,4,5,6個小圓點的小正方體.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,已知△ABC中,AB=2,BC=4.畫出△ABC的高AD和CE并求出的值.
(2)在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點A的坐標(biāo)為,點B坐標(biāo)為滿足.
①若沒有平方根,判斷點A在第幾象限并說明理由;
②若點A到軸的距離是點B到軸距離的3倍,求點B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,CD為⊙O的弦,連接AC,BD,半徑CO交BD于點E,過點C作切線,交AB的延長線于點F,且∠CFA=∠DCA.
(1)求證:OE⊥BD;
(2)若BE=4,CE=2,則⊙O的半徑是 ,弦AC的長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】使用家用燃?xì)庠顭_同一壺水所需的燃?xì)饬?/span>(單位:)與旋鈕的旋轉(zhuǎn)角度(單位:度)()近似滿足函數(shù)關(guān)系y=ax2+bx+c(a≠0).如圖記錄了某種家用燃?xì)庠顭_同一壺水的旋鈕角度與燃?xì)饬?/span>的三組數(shù)據(jù),根據(jù)上述函數(shù)模型和數(shù)據(jù),可推斷出此燃?xì)庠顭_一壺水最節(jié)省燃?xì)獾男o角度約為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個正六棱柱的表面展開后恰好放入一個矩形內(nèi),把其中一部分圖形挪動了位置,發(fā)現(xiàn)矩形的長留出,寬留出則該六棱柱的側(cè)面積是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)()的圖象交于,兩點.
(1)求的值;
(2)求出一次函數(shù)與反比例函數(shù)的表達式;
(3)過點作軸的垂線,與直線和函數(shù)()的圖象的交點分別為點,,當(dāng)點在點下方時,寫出的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com