【題目】如圖,已知在中,對(duì)角線,,平分交的延長(zhǎng)線于點(diǎn),連接.
(1)求證:.
(2)設(shè),連接交于點(diǎn).畫出圖形,并求的長(zhǎng).
【答案】(1)證明見解析;(2).
【解析】
(1)根據(jù)角平分線的性質(zhì)可得∠ADE=∠CDE,再根據(jù)平行四邊形的性質(zhì)和平行線的性質(zhì)可得∠CDE=∠AED,利用等量代換可得∠ADE=∠AED,根據(jù)等角對(duì)等邊可得AD=AE;
(2)首先利用直角三角形的性質(zhì)計(jì)算出BD,根據(jù)勾股定理可得AB長(zhǎng),然后再根據(jù)平行四邊形的性質(zhì)得出,,再利用勾股定理可得OA的值,進(jìn)而可得答案.
(1)證明:∵DE平分∠ADC,
∴∠ADE=∠CDE,
∵四邊形ABCD是平行四邊形,
∴CD∥AB,
∴∠CDE=∠AED,
∴∠ADE=∠AED,
∴AD=AE;
(2)解:在中,∠DAB=30°,AD=12,
∴,
∴,
∵四邊形ABCD是平行四邊形,
∴,,
在中,,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若a、b滿足,且A(a,0)、B(0,b)
(1) 如圖,在x正半軸上有一點(diǎn)C(x,0).若△ABC的面積大于6,請(qǐng)直接寫出x的取值范圍____________;
(2)若在平面直角坐標(biāo)系第四象限上存在一點(diǎn)N,N的坐標(biāo)為(n,﹣n),滿足4≤S△ABN≤8,求n的取值范圍.
(3)若在平面直角坐標(biāo)系上存在一點(diǎn)M,M的坐標(biāo)為(m,﹣2m),請(qǐng)通過計(jì)算說明:無論m取何值△ABM的面積為定值,并求出這個(gè)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)B是x軸正半軸上的一動(dòng)點(diǎn),以AB為邊作等腰Rt△ABC,使∠BAC=90°,設(shè)點(diǎn)B的橫坐標(biāo)為x,設(shè)點(diǎn)C的縱坐標(biāo)為y,能表示y與x的函數(shù)關(guān)系的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=﹣x+2的圖象與反比例函數(shù)y2= 的圖象相交于A,B兩點(diǎn),點(diǎn)B的坐標(biāo)為(2m,﹣m).
(1)求出m值并確定反比例函數(shù)的表達(dá)式;
(2)請(qǐng)直接寫出當(dāng)x<m時(shí),y2的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,,若動(dòng)點(diǎn)P從點(diǎn)C開始,按的路徑運(yùn)動(dòng),且速度為每秒1cm,設(shè)出發(fā)的時(shí)間為t秒.
出發(fā)2秒后,求的面積;
當(dāng)t為幾秒時(shí),BP平分;
問t為何值時(shí),為等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:
①4ac<b2;
②方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3;
③3a+c>0;
④當(dāng)y>0時(shí),x的取值范圍是﹣1≤x<3;
⑤當(dāng)x<0時(shí),y隨x增大而增大;
其中結(jié)論正確有 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料解決問題:
材料:古希臘著名數(shù)學(xué)家 畢達(dá)哥拉斯發(fā)現(xiàn)把數(shù)1,3,6,10,15,21…這些數(shù)量的(石子),都可以排成三角形,則稱像這樣的數(shù)為三角形數(shù).
把數(shù) 1,3,6,10,15,21…換一種方式排列,即
1=1
1+2=3
1+2+3=6
1+2+3+4=10
1+2+3+4+5=15
…
從上面的排列方式看,把1,3,6,10,15,…叫做三角形數(shù)“名副其實(shí)”.
(1)設(shè)第一個(gè)三角形數(shù)為a1=1,第二個(gè)三角形數(shù)為a2=3,第三個(gè)三角形數(shù)為a3=6,請(qǐng)直接寫出第n個(gè)三角形數(shù)為an的表達(dá)式(其中n為正整數(shù)).
(2)根據(jù)(1)的結(jié)論判斷66是三角形數(shù)嗎?若是請(qǐng)說出66是第幾個(gè)三角形數(shù)?若不是請(qǐng)說明理由.
(3)根據(jù)(1)的結(jié)論判斷所有三角形數(shù)的倒數(shù)之和T與2的大小關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,是上一點(diǎn),于點(diǎn),是的中點(diǎn),于點(diǎn),與交于點(diǎn),若,平分,連結(jié),.
(1)求證:;
(2)求證:.
(3)若,判定四邊形是否為菱形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究學(xué)習(xí):
(1)感知與填空
如圖,直線.求證:.
閱讀下面的解答過程,并填上適當(dāng)?shù)睦碛桑?/span>
解:延長(zhǎng)交于,
∵(已知),∴( )
∵( ),
∴(等量代換)
(2)應(yīng)用與拓展
如圖,直線.若,,,則______度.
(3)方法與實(shí)踐
如圖,直線.請(qǐng)?zhí)骄?/span>,和之間有怎樣的關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com