【題目】小林在沒(méi)有量角器和圓規(guī)的情況下,利用刻度尺和一副三角板畫(huà)出了一個(gè)角的平分線,他的作法是這樣的:如圖:

1)利用刻度尺在∠AOB的兩邊OA,OB上分別取OMON;

2)利用兩個(gè)三角板,分別過(guò)點(diǎn)M,N畫(huà)OMON的垂線,交點(diǎn)為P;

3)畫(huà)射線OP

則射線OP為∠AOB的平分線.請(qǐng)寫(xiě)出小林的畫(huà)法的依據(jù)______

【答案】斜邊和一條直角邊分別相等的兩個(gè)直角三角形全等;全等三角形的對(duì)應(yīng)角相等;兩點(diǎn)確定一條直線

【解析】

利用“HL”判斷RtOPMRtOPN,從而得到∠POM=PON

有畫(huà)法得OMON,∠OMP=∠ONP90°,則可判定RtOPMRtOPN,

所以∠POM=∠PON,

即射線OP為∠AOB的平分線.

故答案為斜邊和一條直角邊分別相等的兩個(gè)直角三角形全等;全等三角形的對(duì)應(yīng)角相等;兩點(diǎn)確定一條直線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某興趣小組用無(wú)人機(jī)進(jìn)行航拍測(cè)高,無(wú)人機(jī)從1號(hào)樓和2號(hào)樓的地面正中間B點(diǎn)垂直起飛到高度為50米的A處,測(cè)得1號(hào)樓頂部E的俯角為60°,測(cè)得2號(hào)樓頂部F的俯角為45°.已知1號(hào)樓的高度為20米,則2號(hào)樓的高度為_____(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】RtABC中,∠BAC=90°,BC=10,tanABC=,點(diǎn)OAB邊上動(dòng)點(diǎn),以O為圓心,OB為半徑的⊙O與邊BC的另一交點(diǎn)為D,過(guò)點(diǎn)DAB的垂線,交⊙O于點(diǎn)E,聯(lián)結(jié)BE、AE

1)如圖(1),當(dāng)AEBC時(shí),求⊙O的半徑長(zhǎng);

2)設(shè)BO=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出定義域;

3)若以A為圓心的⊙A與⊙O有公共點(diǎn)D、E,當(dāng)⊙A恰好也過(guò)點(diǎn)C時(shí),求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是小明設(shè)計(jì)的在一個(gè)平行四邊形內(nèi)作菱形的尺規(guī)作圖過(guò)程.

已知:四邊形是平行四邊形.

求作:菱形(點(diǎn)上,點(diǎn)上).

作法:①以為圓心,長(zhǎng)為半徑作弧,交于點(diǎn);

②以為圓心,長(zhǎng)為半徑作弧,交于點(diǎn);

③連接.所以四邊形為所求作的菱形.

根據(jù)小明設(shè)計(jì)的尺規(guī)作圖過(guò)程,

1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

2)完成下面的證明.

證明:∵,

      

中,

∴四邊形為平行四邊形.

,

∴四邊形為菱形(   )(填推理的依據(jù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)CBEy軸上,RtABC經(jīng)過(guò)變化得到RtEDO,若點(diǎn)B的坐標(biāo)為(0,1),OD2,則這種變化可以是(

A.ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,再向下平移5個(gè)單位長(zhǎng)度

B.ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,再向下平移5個(gè)單位長(zhǎng)度

C.ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,再向左平移3個(gè)單位長(zhǎng)度

D.ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,再向右平移1個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校詩(shī)詞知識(shí)競(jìng)賽培訓(xùn)活動(dòng)中,在相同條件下對(duì)甲、乙兩名學(xué)生進(jìn)行了10次測(cè)驗(yàn),他們的10次成績(jī)?nèi)缦拢▎挝唬悍郑赫、分析過(guò)程如下,請(qǐng)補(bǔ)充完整.

1)按如下分?jǐn)?shù)段整理、描述這兩組數(shù)據(jù):

成績(jī)x

學(xué)生

70≤x≤74

75≤x≤79

80≤x≤84

85≤x≤89

90≤x≤94

95≤x≤100

______

______

______

______

______

______

1

1

4

2

1

1

2)兩組數(shù)據(jù)的極差、平均數(shù)、中位數(shù)、眾數(shù)、方差如下表所示:

學(xué)生

極差

平均數(shù)

中位數(shù)

眾數(shù)

方差

______

83.7

______

86

13.21

24

83.7

82

______

46.21

3)若從甲、乙兩人中選擇一人參加知識(shí)競(jìng)賽,你會(huì)選______(填乙),理由為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCD中,點(diǎn)B關(guān)于AD的對(duì)稱點(diǎn)為B′,連接AB′,CB′CB′ADF點(diǎn).

1)如圖1,∠ABC=90°,求證:FCB′的中點(diǎn);

2)小宇通過(guò)觀察、實(shí)驗(yàn)、提出猜想:如圖2,在點(diǎn)B繞點(diǎn)A旋轉(zhuǎn)的過(guò)程中,點(diǎn)F始終為CB′的中點(diǎn).小宇把這個(gè)猜想與同學(xué)們進(jìn)行交流,通過(guò)討論,形成了證明該猜想的幾種想法:

想法1:過(guò)點(diǎn)B′B′GCDADG點(diǎn),只需證三角形全等;

想法2:連接BB′ADH點(diǎn),只需證HBB′的中點(diǎn);

想法3:連接BB′,BF,只需證∠B′BC=90°

請(qǐng)你參考上面的想法,證明FCB′的中點(diǎn).(一種方法即可)

3)如圖3,當(dāng)∠ABC=135°時(shí),AB′CD的延長(zhǎng)線相交于點(diǎn)E,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】AB為⊙O直徑,C為⊙O上的一點(diǎn),過(guò)點(diǎn)C的切線與AB的延長(zhǎng)線相交于點(diǎn)D,CACD

1)連接BC,求證:BCOB;

2E中點(diǎn),連接CE,BE,若BE2,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知AOBA0,﹣3),B(﹣2,0).將OAB先繞點(diǎn)B 逆時(shí)針旋轉(zhuǎn)90°得到BO1A1,再把所得三角形向上平移2個(gè)單位得到B1A2O2;

1)在圖中畫(huà)出上述變換的圖形,并涂黑;

2)求OAB在上述變換過(guò)程所掃過(guò)的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案