【題目】張大伯計劃建一個面積為72平方米的矩形養(yǎng)雞場,為了節(jié)約材料,雞場一邊靠著原有的一堵墻(墻長15米),另外的部分(包括中間的隔墻)用30米的竹籬笆圍成,如圖.

1)請你通過計算幫助張大伯設計出圍養(yǎng)雞場的方案.

2)在上述條件不變的情況下,能圍出比72平方米更大的養(yǎng)雞場嗎?請說明理由.

【答案】1)垂直于墻的一邊長為6米,平行于墻的一邊長為12; 2)能,理由詳見試題解析.

【解析】

1)本題可設一邊的長,然后根據(jù)三邊的長,表示出另一邊,再根據(jù)矩形的面積=×寬來得出方程,求出未知數(shù)的值(要注意墻長15米的條件).

2)根據(jù)(1)的等量關系我們就能得出面積與邊的函數(shù)關系式,根據(jù)函數(shù)的性質,我們就能判斷出72平米是否是最大的面積.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】兩個大小不同的等腰直角三角尺如圖1所示放置,圖2是由它抽象出的幾何圖形,點,在同一條直線上,連接

1)請找出圖2中與全等的三角形,并說明理由(說明:結論中不得含有未標識的字母);

2)判斷線段是否垂直,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,函數(shù)y1=x+4的圖象與函數(shù)y2= (x0)的圖象交于 A(a,1)、B(1,b)兩點.

(1)a,by2的函數(shù)關系式;

(2)觀察圖象,當x0時,比較y1y2大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形ABCD中,點P在射線AC上,作點P關于直線CD的對稱點Q,作射線BQ交射線DC于點E,連接BP.

(1)當點P在線段AC上時,如圖1.

依題意補全圖1;

EQ=BP,則∠PBE的度數(shù)為   ,并證明;

(2)當點P在線段AC的延長線上時,如圖2.若EQ=BP,正方形ABCD的邊長為1,請寫出求BE長的思路.(可以不寫出計算結果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】河南省旅游資源豐富,2013~2017年旅游收入不斷增長,同比增速分別為:15.3%,12.7%,15.3%,14.5%,17.1%.關于這組數(shù)據(jù),下列說法正確的是(  )

A. 中位數(shù)是12.7% B. 眾數(shù)是15.3%

C. 平均數(shù)是15.98% D. 方差是0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB、CD相交于點O,∠AOC=30°,⊙P的半徑為1cm,且OP=6cm,如果P以1cm/s的速度沿由A向B的方向移動,那么多少秒后P與直線CD相切( 。

A. 4或8 B. 4或6 C. 8 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,ADBC邊上的中線,AEBC邊上的高.

1)若∠ACB100°,求∠CAE的度數(shù);

2)若SABC12,CD4,求高AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線與x軸的交點坐標分別為A(1,0),B(x2,0)(點B在點A的右側),其對稱軸是x=3,該函數(shù)有最小值是﹣2.

(1)求二次函數(shù)解析式;

(2)在圖1上作平行于x軸的直線,交拋物線于C(x3,y3),D(x4,y4),求x3+x4的值;

(3)將(1)中函數(shù)的部分圖象(x>x2)向下翻折與原圖象未翻折的部分組成圖象“G”,如圖2,在(2)中平行于x軸的直線取點E(x5,y5)、(x4<x5),結合函數(shù)圖象求x3+x4+x5的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:如果兩條線段將一個三角形分成3個小等腰三角形,我們把這兩條線段叫做這個三角形的三分線.

1)如圖1,在△ABC中,ABAC,點DAC邊上,且ADBDBC,求∠A的大。

2)在圖1中過點C作一條線段CE,使BD,CE是△ABC的三分線;在圖2中畫出頂角為45°的等腰三角形的三分線,并標注每個等腰三角形頂角的度數(shù);

3)在△ABC中,∠B30°,ADDE是△ABC的三分線,點DBC邊上,點EAC邊上,且ADBD,DECE,請直接寫出∠C所有可能的值.

查看答案和解析>>

同步練習冊答案