【題目】1)請(qǐng)用兩種不同的方法列代數(shù)式表示圖1的面積

方法1 ,

方法2 ;

2)若a+b=7,ab=15,根據(jù)(1)的結(jié)論求a2+b2的值;

3)如圖2,將邊長(zhǎng)為xx+2的長(zhǎng)方形,分成邊長(zhǎng)為x的正方形和兩個(gè)寬為1的小長(zhǎng)方形,并將這三個(gè)圖形拼成圖3,這時(shí)只需要補(bǔ)一個(gè)邊長(zhǎng)為1的正方形便可以構(gòu)成一個(gè)大正方形.

①若一個(gè)長(zhǎng)方形的面積是216,且長(zhǎng)比寬大6,求這個(gè)長(zhǎng)方形的寬.

②把一個(gè)長(zhǎng)為m,寬為n的長(zhǎng)方形(mn)按上述操作,拼成一個(gè)在一角去掉一個(gè)小正方形的大正方形,則去掉的小正方形的邊長(zhǎng)為

【答案】1)見(jiàn)解析;(219;(3)①12;②.

【解析】

1)圖1可看作是邊長(zhǎng)為(a+b)的正方形面積,也可看作邊長(zhǎng)分別為ab2個(gè)正方形面積加上2個(gè)長(zhǎng)為a寬為b的矩形面積.

2)根據(jù)(1)可得關(guān)于a、b的等式,將已知數(shù)值代入進(jìn)行計(jì)算即可得答案 ;

3)由圖2到圖3可知,若記原長(zhǎng)方形的長(zhǎng)為m,寬為n,則拼成的大正方形的邊長(zhǎng)為(n+),右下角小正方形邊長(zhǎng)為

1)方法1,圖1可看作是邊長(zhǎng)為(a+b)的正方形面積,即(a+b2

方法2,圖1可看作是邊長(zhǎng)分別為ab2個(gè)正方形面積加上2個(gè)長(zhǎng)為a寬為b的矩形面積,即a2+2ab+b2

故答案為:(a+b2;a2+2ab+b2

2)∵a+b=7

∴(a+b2=49,即a2+2ab+b2=49

又∵ab=15

a2+b2=49-2ab=19

故答案為:19

3)①設(shè)寬為x,由題意可得:

x+6÷22=216+(6÷2)2

因?yàn)?/span>x0,解得x=12

故答案為:12

②由題可知:去掉小正方形的邊長(zhǎng)是原長(zhǎng)方形長(zhǎng)與寬差的一半.

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC中,AB=AC=10cmBC=8cm,點(diǎn)DAB的中點(diǎn).

(1)如果點(diǎn)P在線段BC上以3cm/s的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).

①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1s后,BPDCQP是否全等,請(qǐng)說(shuō)明理由;

②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使BPDCQP全等?

(2)若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿ABC三邊運(yùn)動(dòng),求經(jīng)過(guò)多長(zhǎng)時(shí)間點(diǎn)P與點(diǎn)Q第一次在ABC的哪條邊上相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知甲校原有1016人,乙校原有1028人,寒假期間甲、乙兩校人數(shù)變動(dòng)的原因只有轉(zhuǎn)出與轉(zhuǎn)入兩種,且轉(zhuǎn)出的人數(shù)比為13,轉(zhuǎn)入的人數(shù)比也為13.若寒假結(jié)束開(kāi)學(xué)時(shí)甲、乙兩校人數(shù)相同,問(wèn):乙校開(kāi)學(xué)時(shí)的人數(shù)與原有的人數(shù)相差多少?( )

A.6B.9C.12D.18

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P為定角∠AOB的平分線上的一個(gè)定點(diǎn),且∠MPN∠AOB互補(bǔ),若∠MPN在繞點(diǎn)P旋轉(zhuǎn)的過(guò)程中,其兩邊分別與OAOB相交于M、N兩點(diǎn),則以下結(jié)論:(1PM=PN恒成立;(2OM+ON的值不變;(3)四邊形PMON的面積不變;(4MN的長(zhǎng)不變,其中正確的個(gè)數(shù)為( 。

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知BADBCE均為等腰直角三角形,∠BAD=BCE=90°,點(diǎn)MDE的中點(diǎn).過(guò)點(diǎn)EAD平行的直線交射線AM于點(diǎn)N

(1)當(dāng)A,BC三點(diǎn)在同一直線上時(shí)(如圖1),求證:MAN的中點(diǎn);

(2)將圖1中BCE繞點(diǎn)B旋轉(zhuǎn),當(dāng)A,BE三點(diǎn)在同一直線上時(shí)(如圖2),求證:CAN為等腰直角三角形;

(3)將圖1中BCE繞點(diǎn)B旋轉(zhuǎn)到圖3的位置時(shí),(2)中的結(jié)論是否仍然成立?若成立,試證明之;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是菱形ABCD的對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P垂直于AC的直線交菱形ABCD的邊于M、N兩點(diǎn)設(shè)AC=2BD=1,AP=x,CMN的面積為y則y關(guān)于x的函數(shù)圖象大致形狀是( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知函數(shù)y=x0)的圖象經(jīng)過(guò)點(diǎn)A、B,點(diǎn)B的坐標(biāo)為(22).過(guò)點(diǎn)AACx軸,垂足為C,過(guò)點(diǎn)BBDy軸,垂足為D,ACBD交于點(diǎn)F.一次函數(shù)y=ax+b的圖象經(jīng)過(guò)點(diǎn)AD,與x軸的負(fù)半軸交于點(diǎn)E

1)若AC=OD,求a、b的值;

2)若BC∥AE,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知BADBCE均為等腰直角三角形,∠BAD=BCE=90°,點(diǎn)MDE的中點(diǎn).過(guò)點(diǎn)EAD平行的直線交射線AM于點(diǎn)N

(1)當(dāng)AB,C三點(diǎn)在同一直線上時(shí)(如圖1),求證:MAN的中點(diǎn);

(2)將圖1中BCE繞點(diǎn)B旋轉(zhuǎn),當(dāng)A,B,E三點(diǎn)在同一直線上時(shí)(如圖2),求證:CAN為等腰直角三角形;

(3)將圖1中BCE繞點(diǎn)B旋轉(zhuǎn)到圖3的位置時(shí),(2)中的結(jié)論是否仍然成立?若成立,試證明之;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,DAB的中點(diǎn),DE⊥AB,∠ACE+∠BCE=180°,EF⊥ACACF,AC=12,BC=8,則AF=________

查看答案和解析>>

同步練習(xí)冊(cè)答案