【題目】如圖,矩形ABCD中,對(duì)角線AC=2,E為BC邊上一點(diǎn),BC=3BE,將矩形ABCD沿AE所在的直線折疊,點(diǎn)B恰好落在對(duì)角線AC上的點(diǎn)B′處,P,Q分別是AB,AC上的動(dòng)點(diǎn),則PE+PQ的最小值為( 。
A.B.2C.1D.3
【答案】B
【解析】
根據(jù)BC=3BE利用折疊和三角函數(shù)求出∠ACB=30°,得到AB=,BC=AB=3,∠BAC=60°,作點(diǎn)E關(guān)于AB的對(duì)稱點(diǎn)E',連接AE',PE',當(dāng)Q,P,E'三點(diǎn)共線,且E'Q⊥AC時(shí),PE+PQ的值最小,最小值為AE'的值,根據(jù)求出答案.
∵BC=3BE,
∴EC=2BE,
∵折疊,
∴BE=B'E,∠ABC=∠AB'E=90°,,
∵sin∠ACB=,
∴∠ACB=30°,
在Rt△ABC中,AC=2,∠ACB=30°,
∴AB=,BC=AB=3,∠BAC=60°,
∴∠BAE=∠EAC=30°,
如圖
作點(diǎn)E關(guān)于AB的對(duì)稱點(diǎn)E',連接AE',PE',
∵PE+PQ=PE'+PQ,
∴當(dāng)Q,P,E'三點(diǎn)共線,且E'Q⊥AC時(shí),
PE+PQ的值最小,
∵BC=3,BC=3BE,
∴BE=1,
∵E',E兩點(diǎn)關(guān)于AB對(duì)稱,
∴BE'=BE=1,∠EAB=∠E'AB=30°,且∠BAC=60°,
∴∠E'AC=90°,
即PE+PQ的最小值為AE'的值,
∵∠BAE'=30°,BE'=1,AB⊥CB,
∴AE'=2,
∴PE+PQ的最小值為2.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某食品零售店為食品廠代銷一種面包,未售出的面包可以退回廠家.經(jīng)統(tǒng)計(jì)銷售情況發(fā)現(xiàn),當(dāng)這種面包的銷售單價(jià)為7角時(shí),每天賣出160個(gè).在此基礎(chǔ)上.單價(jià)每提高1角時(shí),該零售店每天就會(huì)少賣出20個(gè)面包.設(shè)這種面包的銷售單價(jià)為x角(每個(gè)面包的成本是5角).零售店每天銷售這種面包的利潤為y角.
(1)用含x的代數(shù)式分別表示出每個(gè)面包的利潤與賣出的面包個(gè)數(shù);
(2)求x與y之間的函數(shù)關(guān)系式:
(3)當(dāng)這種面包的銷售單價(jià)定為多少時(shí),該零售店每天銷售這種面包獲得的利潤最大?最大利潤為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,一次函數(shù)y=x﹣1的圖象與x軸,y軸分別交于點(diǎn)A,B,與反比例函數(shù)y=的圖象交于點(diǎn)C,D,CE⊥x軸于點(diǎn)E,.
(1)求反比例函數(shù)的表達(dá)式與點(diǎn)D的坐標(biāo);
(2)以CE為邊作ECMN,點(diǎn)M在一次函數(shù)y=x﹣1的圖象上,設(shè)點(diǎn)M的橫坐標(biāo)為a,當(dāng)邊MN與反比例函數(shù)y=的圖象有公共點(diǎn)時(shí),求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)
如圖,矩形AOCB的頂點(diǎn)A、C分別位于x軸和y軸的正半軸上,線段OA、OC的長度滿足方程|x-15|+=0(OB>OC),直線y=kx+b分別與x軸、y軸交于M、N兩點(diǎn),連接BN.將△BCN沿直線BN折疊,點(diǎn)C恰好落在直線MN上的點(diǎn)D處,且tan∠CBD=.
⑴ 求點(diǎn)B的坐標(biāo).
⑵ 求直線BN的解析式.
⑶ 將直線BN以每秒1個(gè)單位長度的速度沿y軸向下平移,求直線BN掃過矩形AOCB的面積S關(guān)于運(yùn)動(dòng)的時(shí)間t(0<t≤13)的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+mx+n交x軸于點(diǎn)A(﹣2,0)和點(diǎn)B,交y軸于點(diǎn)C(0,2).
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)M在拋物線上,且S△AOM=2S△BOC,求點(diǎn)M的坐標(biāo);
(3)如圖2,設(shè)點(diǎn)N是線段AC上的一動(dòng)點(diǎn),作DN⊥x軸,交拋物線于點(diǎn)D,求線段DN長度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了了解初中學(xué)校“高效課堂”的有效程度,并就初中生在課堂上是否具有“主動(dòng)質(zhì)疑”、“獨(dú)立思考”、“專注聽講”、“講解題目”等學(xué)習(xí)行為進(jìn)行評(píng)價(jià).為此,該市教研部門開展了一次抽樣調(diào)查, 并將調(diào)查結(jié)果繪制成尚不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖( 如圖所示),請(qǐng)根據(jù)圖中信息解答下列問題:
(1)這次抽樣調(diào)查的樣本容量為 .
(2)在扇形統(tǒng)計(jì)圖中,“主動(dòng)質(zhì)疑”對(duì)應(yīng)的圓心角為 度;
(3)請(qǐng)補(bǔ)充完整條形統(tǒng)計(jì)圖;
(4)若該市初中學(xué)生共有萬人,在課堂上具有“獨(dú)立思考”行為的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有三張正面分別寫有數(shù)字-1,1,2的卡片,它們除數(shù)字不同無其它差別,現(xiàn)將這三張卡片背面朝上洗勻后.
(1)隨機(jī)抽取一張,求抽到數(shù)字2的概率;
(2)先隨機(jī)抽取一張,以其正面數(shù)字作為k值,將卡片放回再隨機(jī)抽一張,以其正面的數(shù)字作為b值,請(qǐng)你用恰當(dāng)?shù)姆椒ū硎舅锌赡艿慕Y(jié)果,并求出直線y=kx+b的圖像不經(jīng)過第四象限的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形為的內(nèi)接四邊形,直徑與對(duì)角線相交于點(diǎn),作于,與過點(diǎn)的直線相交于點(diǎn),.
(1)求證:為的切線;
(2)若平分,求證:;
(3)在(2)的條件下,為的中點(diǎn),連接,若,的半徑為,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)n度后,得到△DEC,點(diǎn)D剛好落在AB邊上.
(1)求n的值;
(2)若F是DE的中點(diǎn),判斷四邊形ACFD的形狀,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com