【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸是直線x=1,下列結(jié)論: ①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.
其中正確的是(

A.①④
B.②④
C.①②③
D.①②③④

【答案】C
【解析】解:∵拋物線開口向上, ∴a>0,
∵拋物線的對稱軸為直線x=﹣ =1,
∴b=﹣2a<0,
∴ab<0,所以①正確;
∵拋物線與x軸有2個交點,
∴△=b2﹣4ac>0,所以②正確;
∵x=1時,y<0,
∴a+b+c<0,
而c<0,
∴a+b+2c<0,所以③正確;
∵拋物線的對稱軸為直線x=﹣ =1,
∴b=﹣2a,
而x=﹣1時,y>0,即a﹣b+c>0,
∴a+2a+c>0,所以④錯誤.
故選C.
【考點精析】關(guān)于本題考查的二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系,需要了解二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關(guān):對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標:(0,c)才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖,關(guān)于該二次函數(shù),下列說法錯誤的是(
A.函數(shù)有最小值
B.對稱軸是直線x=
C.當x< ,y隨x的增大而減小
D.當﹣1<x<2時,y>0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在四邊形ABCD中,AD∥BC,∠C=90°,AB=AD=50,BC=64,連結(jié)BD,AE⊥BD垂足為E,
(1)求證:△ABE∽△DCB;
(2)求線段DC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A、B、C的坐標分別為(﹣1,3)、(﹣4,1)、(﹣2,1),先將△ABC沿一確定方向平移得到△A1B1C1 , 點B的對應點B1的坐標是(1,2),再將△A1B1C1繞原點O順時針旋轉(zhuǎn)90°得到△A2B2C2 , 點A1的對應點為點A2

(1)畫出△A1B1C1;
(2)畫出△A2B2C2;
(3)求:點A到A2的直線距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在下列網(wǎng)格圖中,每個小正方形的邊長均為1個單位.在Rt△ABC中,∠C=90°,AC=3,BC=4.

(1)試在圖中做出△ABC以A為旋轉(zhuǎn)中心,沿順時針方向旋轉(zhuǎn)90°后的圖形△AB1C1
(2)若點B的坐標為(﹣3,5),試在圖中畫出直角坐標系,并標出A、C兩點的坐標;
(3)根據(jù)(2)的坐標系作出與△ABC關(guān)于原點對稱的圖形△A2B2C2 , 并標出B2、C2兩點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是某同學對多項式(x24x+2)(x24x+6+4進行因式分解的過程.

解:設x24x=y

原式=y+2)(y+6+4 (第一步)

=y2+8y+16 (第二步)

=y+42(第三步)

=x24x+42(第四步)

回答下列問題:

1)該同學第二步到第三步運用了因式分解的_______

A.提取公因式

B.平方差公式

C.兩數(shù)和的完全平方公式

D.兩數(shù)差的完全平方公式

2)該同學因式分解的結(jié)果是否徹底?________.(填徹底不徹底)若不徹底,請直接寫出因式分解的最后結(jié)果_________

3)請你模仿以上方法嘗試對多項式(x22x)(x22x+2+1進行因式分解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,點D,E,F(xiàn)分別是AB,BC,CA的中點,AH是邊BC上的高.
(1)求證:四邊形ADEF是平行四邊形;
(2)求證:∠DHF=∠DEF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著私家車擁有量的增加,停車問題已經(jīng)給人們的生活帶來了很多不便.為了緩解停車矛盾,某小區(qū)開發(fā)商欲投資16萬元,建造若干個停車位,考慮到實際因素,計劃露天車位的數(shù)量不少于室內(nèi)車位的2倍,但不超過室內(nèi)車位的3倍.據(jù)測算,建造費用及年租金如下表:

類別

室內(nèi)車位

露天車位

建造費用(元/個)

5 000

1 000

年租金(元/個)

2 000

800

(1)該開發(fā)商有哪幾種符合題意的建造方案?寫出解答過程.
(2)若按表中的價格將兩種車位全部出租,哪種方案獲得的年租金最多?并求出此種方案的年租金.(不考慮其他費用)

查看答案和解析>>

同步練習冊答案