【題目】如圖,正方形ABCD由四個(gè)相同的大長(zhǎng)方形,四個(gè)相同的小長(zhǎng)形以及一個(gè)小正方形組成,其中四個(gè)大長(zhǎng)方形的長(zhǎng)和寬分別是小長(zhǎng)方形長(zhǎng)和寬的2倍,若中間小正方形的面積為1,則大正方形ABCD的面積是( )
A.36B.25C.20D.16
【答案】D
【解析】
設(shè)小長(zhǎng)方形的長(zhǎng)和寬分別為x、y,可表示出大長(zhǎng)方形的長(zhǎng)和寬分別為2x、2y,由題意可得中間小正方形邊長(zhǎng)為1,觀察圖形可得x-y=1,正方形ABCD的邊長(zhǎng)為2x+2y或2y+x+y+2y,于是可得方程組,進(jìn)一步即可求得結(jié)果.
解:設(shè)小長(zhǎng)方形的長(zhǎng)和寬分別為x、y,則大長(zhǎng)方形的長(zhǎng)和寬分別為2x、2y,因?yàn)橹虚g小正方形的面積為1,所以其邊長(zhǎng)為1,觀察圖形可得x-y=1,正方形ABCD的邊長(zhǎng)為2x+2y或2y+x+y+2y,,于是得方程組,解得.
于是正方形ABCD的邊長(zhǎng)為2x+2y=4,其面積是16.
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠A=50°,∠B=30°,點(diǎn)D在AB邊上,連接CD,若△ACD為直角三角形,則∠BCD的度數(shù)為________度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線a,b,c表示三條公路,現(xiàn)要建一個(gè)貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則可供選擇的地址有_________處。(填數(shù)字)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將Rt△ABC繞直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到△A′B′C,連接BB',若∠A′B′B=20°,則∠A的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是△ABC的角平分線,DF⊥AB,垂足為點(diǎn)F,DE=DG.若△ADG和△AED的面積分別為50和30,則△EDF的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知BD為∠ABC的平分線,DE⊥BC于E,且AB+BC=2BE.
(1)求證:∠BAD+∠BCD=180°;
(2)若將條件“AB+BC=2BE”與結(jié)論“∠BAD+∠BCD=180°”互換,結(jié)論還成立嗎?請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,用大小相同的小正方體從左至右擺放成幾何體,若小正方體的棱長(zhǎng)為1cm,則第①個(gè)幾何體的表面積為6cm2,第②個(gè)幾何體的表面積為18cm2,第③個(gè)幾何體的表面積為36cm2,第④個(gè)幾何體的表面積為60cm2,…,按照這樣的規(guī)律,第n個(gè)幾何體的表面積為________cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列有四個(gè)結(jié)論:①若,則;
②若,,則的值為;
③若的運(yùn)算結(jié)果中不含項(xiàng),則;
④若,,則可表示為.
其中正確的是(填序號(hào))是:______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com