【題目】下表中給出了變量x與ax2,ax2+bx+c之間的部分對應(yīng)值(表格中的符號“…”表示該項(xiàng)數(shù)據(jù)已經(jīng)丟失)
x | -1 | 0 | 1 |
ax | … | … | 1 |
ax+ bx + c | 7 | 2 | … |
(1)寫出這條拋物線的開口方向,頂點(diǎn)D的坐標(biāo);并說明它的變化情況;
(2)拋物線的頂點(diǎn)為D,與y軸的交點(diǎn)為A,點(diǎn)M是拋物線對稱軸上的一點(diǎn),直線AM交對稱軸右側(cè)的拋物線于點(diǎn)B,當(dāng)△ADM與△BDM的面積比為2:3時,求點(diǎn)B的坐標(biāo):
(3)在(2)的條件下,設(shè)線段BD交x軸于點(diǎn)C,試寫出∠BAD與∠DCO的數(shù)量關(guān)系,并說明理由.
【答案】(1),開口向上,,變化情況見解析;(2);(3),理由見解析
【解析】
(1)根據(jù)(1,1)在拋物線y=ax2上可求出a值,再由(-1,7)、(0,2)在拋物線y=x2+bx+c上可求出b、c的值,即可得到答案;
(2)根據(jù)△ADM和△BDM同底可得出兩三角形的面積比等于高的比,結(jié)合點(diǎn)A的坐標(biāo)即可求出點(diǎn)B的橫坐標(biāo),再利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出點(diǎn)B的坐標(biāo);
(3)利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出A、D的坐標(biāo),過點(diǎn)A作AN∥x軸,交BD于點(diǎn)N,則∠AND=∠DCO,根據(jù)點(diǎn)B、D的坐標(biāo)利用待定系數(shù)法可求出直線BD的解析式,利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)N的坐標(biāo),利用兩點(diǎn)間的距離公式可求出BA、BD、BN的長度,由三者間的關(guān)系結(jié)合∠ABD=∠NBA,可證出△ABD∽△NBA,根據(jù)相似三角形的性質(zhì)可得出∠ANB=∠DAB,再由∠ANB+∠AND=180°可得出∠DAB+∠DCO=180°.
解:(1)當(dāng)x=1時,y=ax2=1,
解得:a=1;
將(-1,7)、(0,2)代入y=x2+bx+c,得:
,
解得: ,
∴拋物線的表達(dá)式為或,
∴該拋物線的開口向上,頂點(diǎn)D(2,-2),
變化情況:在對稱軸 的左邊y隨x的增大而減小,再對稱軸的右邊y隨x的增大而增大;
(2)∵△ADM和△BDM同底,且△ADM與△BDM的面積比為2:3,
∴點(diǎn)A到拋物線的距離與點(diǎn)B到拋物線的距離比為2:3.
∵拋物線的對稱軸為直線x=2,點(diǎn)A的橫坐標(biāo)為0,
∴點(diǎn)B到拋物線對稱軸的距離為3,
∴點(diǎn)B的橫坐標(biāo)為3+2=5,
∴點(diǎn)B的坐標(biāo)為(5,7).
(3)∠BAD+∠DCO=180°,理由如下:
當(dāng)x=0時,,
∴點(diǎn)A的坐標(biāo)為(0,2),
∵,
∴點(diǎn)D的坐標(biāo)為(2,-2).
過點(diǎn)A作AN∥x軸,交BD于點(diǎn)N,則∠AND=∠DCO,如圖所示.
設(shè)直線BD的表達(dá)式為y=mx+n(m≠0),
將B(5,7)、D(2,-2)代入y=mx+n,
得到: ,
解得: ,
∴直線BD的表達(dá)式為y=3x-8.
當(dāng)y=2時,有3x-8=2,
解得: ,
∵A(0,2),B(5,7),D(2,-2),
∴ ,
∴ ,
又∵∠ABD=∠NBA,
∴△ABD∽△NBA,
∴∠ANB=∠DAB.
∵∠ANB+∠AND=180°,
∴∠DAB+∠DCO=180°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
情境觀察:將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點(diǎn)A′與點(diǎn)A重合,并繞點(diǎn)A按逆時針方向旋轉(zhuǎn),使點(diǎn)D、A(A′)、B在同一條直線上,如圖2所示.
觀察圖2可知:與BC相等的線段是 ▲ ,∠CAC′= ▲ °.
問題探究:如圖3,△ABC中,AG⊥BC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點(diǎn)E、F作射線GA的垂線,垂足分別為P、Q. 試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.
拓展延伸:如圖4,△ABC中,AG⊥BC于點(diǎn)G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點(diǎn)H. 若AB=k AE,AC=k AF,試探究HE與HF之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)在(0,2),(0,3)之間(包含端點(diǎn)),頂點(diǎn)坐標(biāo)為(1,n),則下列結(jié)論:
①2a+b<0;
②﹣1≤a≤﹣;
③對于任意實(shí)數(shù)m,a(m2﹣1)+b(m﹣1)≤0總成立;
④關(guān)于x的方程ax2+bx+c=n+1有兩個不相等的實(shí)數(shù)根.
其中結(jié)論正確的序號是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016山東省煙臺市)某中學(xué)廣場上有旗桿如圖1所示,在學(xué)習(xí)解直角三角形以后,數(shù)學(xué)興趣小組測量了旗桿的高度.如圖2,某一時刻,旗桿AB的影子一部分落在平臺上,另一部分落在斜坡上,測得落在平臺上的影長BC為4米,落在斜坡上的影長CD為3米,AB⊥BC,同一時刻,光線與水平面的夾角為72°,1米的豎立標(biāo)桿PQ在斜坡上的影長QR為2米,求旗桿的高度(結(jié)果精確到0.1米).(參考數(shù)據(jù):sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC為等邊三角形, M為三角形外任意一點(diǎn),把△ABM繞著點(diǎn)A按逆時針方向旋轉(zhuǎn)60°到△CAN的位置.
(1)如圖①,若∠BMC=120°,BM=2,MC=3.求∠AMB的度數(shù)和求AM的長.
(2)如圖②,若∠BMC = n°,試寫出AM、BM、CM之間的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,對稱軸是直線.下列結(jié)論:①;②;③;④(為實(shí)數(shù)).其中結(jié)論正確的個數(shù)為( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過O、A(4,0)、B(5,5)三點(diǎn),直線l交拋物線于點(diǎn)B,交y軸于點(diǎn)C(0,﹣4).點(diǎn)P是拋物線上一個動點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)P關(guān)于直線OB的對稱點(diǎn)恰好落在直線l上,求點(diǎn)P的坐標(biāo);
(3)M是線段OB上的一個動點(diǎn),過點(diǎn)M作直線MN⊥x軸,交拋物線于點(diǎn)N.當(dāng)以M、N、B為頂點(diǎn)的三角形與△OBC相似時,直接寫出點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,頂點(diǎn)為M的拋物線y=ax2+bx+3與x軸交于A(﹣1,0),B兩點(diǎn),與y軸交于點(diǎn)C,過點(diǎn)C作CD⊥y軸交拋物線于另一點(diǎn)D,作DE⊥x軸,垂足為點(diǎn)E,雙曲線y=(x>0)經(jīng)過點(diǎn)D,連接MD,BD.
(1)求拋物線的表達(dá)式;
(2)點(diǎn)N,F分別是x軸,y軸上的兩點(diǎn),當(dāng)以M,D,N,F為頂點(diǎn)的四邊形周長最小時,求出點(diǎn)N,F的坐標(biāo);
(3)動點(diǎn)P從點(diǎn)O出發(fā),以每秒1個單位長度的速度沿OC方向運(yùn)動,運(yùn)動時間為t秒,當(dāng)t為何值時,∠BPD的度數(shù)最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com