【題目】如圖,頂點(diǎn)為M的拋物線y=ax2+bx+3與x軸交于A(﹣1,0),B兩點(diǎn),與y軸交于點(diǎn)C,過點(diǎn)C作CD⊥y軸交拋物線于另一點(diǎn)D,作DE⊥x軸,垂足為點(diǎn)E,雙曲線y=(x>0)經(jīng)過點(diǎn)D,連接MD,BD.
(1)求拋物線的表達(dá)式;
(2)點(diǎn)N,F分別是x軸,y軸上的兩點(diǎn),當(dāng)以M,D,N,F為頂點(diǎn)的四邊形周長最小時,求出點(diǎn)N,F的坐標(biāo);
(3)動點(diǎn)P從點(diǎn)O出發(fā),以每秒1個單位長度的速度沿OC方向運(yùn)動,運(yùn)動時間為t秒,當(dāng)t為何值時,∠BPD的度數(shù)最大?
【答案】(1)y=﹣x2+2x+3;(2)N(,0),F(0,);(3)t=9﹣2.
【解析】
(1)由已知求出D點(diǎn)坐標(biāo),將點(diǎn)A(-1,0)和D(2,3)代入y=ax2+bx+3即可;
(2)作M關(guān)于y軸的對稱點(diǎn)M',作D關(guān)于x軸的對稱點(diǎn)D',連接M'D'與x軸、y軸分別交于點(diǎn)N、F,則以M,D,N,F為頂點(diǎn)的四邊形周長最小即為M'D'+MD的長;
(3)設(shè)P(0,t),作△PBD的外接圓N,當(dāng)⊙N與y軸相切時,∠BPD的度數(shù)最大;
解;(1)C(0,3)
∵CD⊥y,
∴D點(diǎn)縱坐標(biāo)是3.
∵D在y=上,
∴D(2,3),
將點(diǎn)A(﹣1,0)和D(2,3)代入y=ax2+bx+3,
∴a=﹣1,b=2,
∴y=﹣x2+2x+3;
(2)M(1,4),B(3,0),
作M關(guān)于y軸的對稱點(diǎn)M',作D關(guān)于x軸的對稱點(diǎn)D',連接M'D'與x軸、y軸分別交于點(diǎn)N、F,
則以M,D,N,F為頂點(diǎn)的四邊形周長最小即為M'D'+MD的長;
∴M'(﹣1,4),D'(2,﹣3),
∴M'D'直線的解析式為y=﹣x+,
∴N(,0),F(0,);
(3)設(shè)P(0,t).
∵△PBO和△CDP都是直角三角形,
tan∠CDP=,tan∠PBO=,
令y=tan∠BPD=,
∴yt2+t﹣3yt+6y﹣9=0,
△=﹣15y2+30y+1=0時,
y=(舍)或y=,
∴t=﹣×,
∴t=9﹣2,
∴P(0,9﹣2).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表中給出了變量x與ax2,ax2+bx+c之間的部分對應(yīng)值(表格中的符號“…”表示該項(xiàng)數(shù)據(jù)已經(jīng)丟失)
x | -1 | 0 | 1 |
ax | … | … | 1 |
ax+ bx + c | 7 | 2 | … |
(1)寫出這條拋物線的開口方向,頂點(diǎn)D的坐標(biāo);并說明它的變化情況;
(2)拋物線的頂點(diǎn)為D,與y軸的交點(diǎn)為A,點(diǎn)M是拋物線對稱軸上的一點(diǎn),直線AM交對稱軸右側(cè)的拋物線于點(diǎn)B,當(dāng)△ADM與△BDM的面積比為2:3時,求點(diǎn)B的坐標(biāo):
(3)在(2)的條件下,設(shè)線段BD交x軸于點(diǎn)C,試寫出∠BAD與∠DCO的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家規(guī)定,中小學(xué)生每天在校體育活動時間不低于1小時,今年受“新冠肺炎”疫情的影響,為落實(shí)教育部“停課不停學(xué)”的要求,我市中學(xué)生進(jìn)行居家線上學(xué)習(xí),為保證廣大學(xué)生的身心健康,有關(guān)部門就“你每天線上學(xué)習(xí)時在室內(nèi)或室外安全區(qū)域體育鍛煉時間是多少”的問題在某校開展了電話調(diào)查,隨機(jī)抽查了部分學(xué)生,再根據(jù)鍛煉時間t(小時)進(jìn)行分組(A組:t<0.5,B組:0.5≤t<1,C組:1≤t<1.5,D組:t≥1.5),繪制成如圖兩幅不完整統(tǒng)計圖,請根據(jù)圖中信息回答問題:
(1)此次抽查的學(xué)生數(shù)為 人,并補(bǔ)全條形統(tǒng)計圖;
(2)計算扇形統(tǒng)計圖中A組部分所對應(yīng)的扇形圓心角度數(shù);
(3)若當(dāng)天該校進(jìn)行居家線上學(xué)習(xí)的學(xué)生數(shù)為1300人,請估計在當(dāng)天達(dá)到國家規(guī)定體育活動時間的學(xué)生有多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(﹣1,4),B(﹣4,0),C(﹣1,0).
(1)△A1B1C1與△ABC關(guān)于原點(diǎn)O對稱,畫出△A1B1C1并寫出點(diǎn)A1的坐標(biāo);
(2)△A2B2C2是△ABC繞原點(diǎn)O順時針旋轉(zhuǎn)90°得到的,畫出△A2B2C2并寫出點(diǎn)A2的坐標(biāo);
(3)連接OA、OA2,在△ABC繞原點(diǎn)O順時針旋轉(zhuǎn)90°得到的△A2B2C2的過程中,計算A變換到A2過程中的路徑是多少?(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,長、寬均為3,高為8的長方體容器,放置在水平桌面上,里面盛有水,水面高為6,繞底面一棱長進(jìn)行旋轉(zhuǎn)傾斜后,水面恰好觸到容器口邊緣,圖2是此時的示意圖,則圖2中水面高度為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店準(zhǔn)備從機(jī)械廠購進(jìn)甲、乙兩種零件進(jìn)行銷售,若一個甲種零件的進(jìn)價比一個乙種零件的進(jìn)價多50元,用4000元購進(jìn)甲種零件的數(shù)量是用1500元購進(jìn)乙種零件的數(shù)量的2倍.
(1)求每個甲種零件,每個乙種零件的進(jìn)價分別為多少元?
(2)這個商店甲種零件每件售價為260元,乙種零件每件售價為190元,商店根據(jù)市場需求,決定向該廠購進(jìn)一批零件,且購進(jìn)乙種零件的數(shù)量比購進(jìn)甲種零件的數(shù)量的2倍還多4個,若本次購進(jìn)的兩種零件全部售出后,總獲利大于2400元.求該商店本次購進(jìn)甲種零件至少是多少個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的弦,點(diǎn)C為⊙O外一點(diǎn),CO⊥OA,交AB于點(diǎn)P,連接BC,BC=PC.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為3,OP=1,求PC的長.
(3)在(2)的條件下,求BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某防洪堤壩長300米,其背水坡的坡角∠ABC=62°,坡面長度AB=25米(圖為橫截面),為了使堤壩更加牢固,一施工隊(duì)欲改變堤壩的坡面,使得加固后坡面的坡角∠ADB=50°
(1)求此時應(yīng)將壩底向外拓寬多少米?(結(jié)果保留到0.01米)
(2)完成這項(xiàng)工程需要土石多少立方米?(參考數(shù)據(jù):sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)交軸于點(diǎn)、,交軸于點(diǎn),在軸上有一點(diǎn),連接.
(1)求二次函數(shù)的表達(dá)式;
(2)若點(diǎn)為拋物線在軸負(fù)半軸上方的一個動點(diǎn),求面積的最大值;
(3)拋物線對稱軸上是否存在點(diǎn),使為等腰三角形,若存在,請直接寫出所有點(diǎn)的坐標(biāo),若不存在請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com