【題目】某工廠對(duì)一批產(chǎn)品進(jìn)行了抽樣檢測(cè).右圖是根據(jù)抽樣檢測(cè)后的產(chǎn)品凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖,其中產(chǎn)品凈重的范圍是[96,106](即96≤凈重≤106),樣本數(shù)據(jù)分組為[96,98)(即96≤凈重<98)以下類似,[98,100),[100,102),[102,104),[104,106],已知樣本中產(chǎn)品凈重小于100克的個(gè)數(shù)是36,則樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的個(gè)數(shù)是 ( ).
A.90
B.75
C. 60
D.45
【答案】A
【解析】解:∵由頻率分布直方圖的性質(zhì)得各矩形面積和等于1,
∴樣本中產(chǎn)品凈重大于96克小于100克的頻率為2×(0.050+0.100)=0.3,
∴樣本容量=
又∵樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的頻率為2×(0.125+0.150+0.100)=0.75,
∴樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的個(gè)數(shù)是120×0.75=90,
故選A
由頻率分布直方圖的性質(zhì)可求樣本中產(chǎn)品凈重大于96克小于100克的頻率,則樣本容量可求,樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的個(gè)數(shù)=樣本容量頻率。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校校長寒假將帶領(lǐng)該校市級(jí)三好學(xué)生去旅游。甲旅行社說:“若校長買全票一張,則其學(xué)生可享受半價(jià)優(yōu)惠。”乙旅行社說:“包括校長在內(nèi)全部按全票的6折優(yōu)惠”。若全票價(jià)為240元,則:
(1)設(shè)學(xué)生數(shù)為 ,分別計(jì)算兩家旅行社的收費(fèi)(用含 的式子表示);
(2)如何選擇兩家旅行社,可使學(xué)校更劃算。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)(-4)×3+(-18)÷(-2)
(2)
(3)先化簡,再求值:x2一(5x2—4y)+3(x2一y)其中x=一1,y=2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:高斯上小學(xué)時(shí),有一次數(shù)學(xué)老師讓同學(xué)們計(jì)算“從1到100這100個(gè)正整數(shù)的和”.許多同學(xué)都采用了依次累加的計(jì)算方法,計(jì)算起來非常煩瑣,且易出錯(cuò).聰明的小高斯經(jīng)過探索后,給出了下面漂亮的解答過程.
解:設(shè)S=1+2+3+…+100, ①
則S=100+99+98+…+1,②
①+②,得
2S=101+101+101+…+101.
(兩式左右兩端分別相加,左端等于2s,右端等于100個(gè)101的和)
所以2S=100x101,
S= ×100X101=5050 ③
所以1+2+3+…+100=5050.
后來人們將小高斯的這種解答方法概括為“倒序相加法”.
請(qǐng)解答下面的問題:
(1)請(qǐng)你運(yùn)用高斯的“倒序相加法”計(jì)算:1+2+3+…+200.
(2)請(qǐng)你認(rèn)真觀察上面解答過程中的③式及你運(yùn)算過程中出現(xiàn)類似的③式,猜想:
1+2+3+…+n= .
(3)計(jì)算:101+102+103+…+2018.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC中,∠C=90°,線段DE在射線BC上,且DE=AC,線段DE沿射線BC運(yùn)動(dòng),開始時(shí),點(diǎn)D與點(diǎn)B重合,點(diǎn)D到達(dá)點(diǎn)C時(shí)運(yùn)動(dòng)停止,過點(diǎn)D作DF=DB,與射線BA相交于點(diǎn)F,過點(diǎn)E作BC的垂線,與射線BA相交于點(diǎn)G.設(shè)BD=x,四邊形DEGF與△ABC重疊部分的面積為S,S關(guān)于x的函數(shù)圖象如圖2所示(其中0<x≤m,1<x≤m,m<x≤3時(shí),函數(shù)的解析式不同).
(1)填空:BC的長是 ;
(2)求S關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課堂上,老師給出了如下一道探究題:“如圖,在邊長為1的正方形組成的6×8的方格中,△ABC和△A1B1C1的頂點(diǎn)都在格點(diǎn)上,且△ABC≌△A1B1C1 . 請(qǐng)利用平移或旋轉(zhuǎn)變換,設(shè)計(jì)一種方案,使得△ABC通過一次或兩次變換后與△A1B1C1完全重合.”
(1)小明的方案是:“先將△ABC向右平移兩個(gè)單位得到△A2B2C2 , 再通過旋轉(zhuǎn)得到△A1B1C1”.請(qǐng)根據(jù)小明的方案畫出△A2B2C2 , 并描述旋轉(zhuǎn)過程;
(2)小紅通過研究發(fā)現(xiàn),△ABC只要通過一次旋轉(zhuǎn)就能得到△A1B1C1 . 請(qǐng)?jiān)趫D中標(biāo)出小紅方案中的旋轉(zhuǎn)中心P,并簡要說明你是如何確定的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖。
(1)觀察發(fā)現(xiàn):如圖1,已知Rt△ABC,∠ABC=90°,分別以AB,BC為邊,向外作正方形ABDE和正方形BCFG,連接DG.若M是DG的中點(diǎn),不難發(fā)現(xiàn):BM= AC.
請(qǐng)完善下面證明思路:①先根據(jù) ,證明BM= DG;②再證明 ,得到DG=AC;所以BM= AC;
(2)數(shù)學(xué)思考:若將上題的條件改為:“已知Rt△ABC,∠ABC=90°,分別以AB,AC為邊向外作正方形ABDE和正方形ACHI,N是EI的中點(diǎn)”,則相應(yīng)的結(jié)論“AN= BC”成立嗎?小穎通過添加如圖2所示的輔助線驗(yàn)證了結(jié)論的正確性.請(qǐng)寫出小穎所添加的輔助線的作法,并由此證明該結(jié)論;
(3)拓展延伸:如圖3,已知等腰△ABC和等腰△ADE,AB=AC,AD=AE.連接BE,CD,若P是CD的中點(diǎn),探索:當(dāng)∠BAC與∠DAE滿足什么條件時(shí),AP= BE,并簡要說明證明思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題
甲、乙兩人同時(shí)從相距25千米的A地去B地,甲騎車乙步行,甲的速度是乙的速度的3倍,甲到達(dá)B地停留40分鐘,然后從B地返回A地,在途中遇見乙,這時(shí)距他們出發(fā)的時(shí)間恰好3小時(shí),求兩人的速度各是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com