【題目】如圖,四邊形ABCD為矩形,AB=4cm,AD=3cm,動(dòng)點(diǎn)M,N分別從點(diǎn)D,B同時(shí)出發(fā),都以1cm/s的速度運(yùn)動(dòng).點(diǎn)M沿DA向終點(diǎn)A運(yùn)動(dòng),點(diǎn)N沿BC向終點(diǎn)C運(yùn)動(dòng).過(guò)點(diǎn)N作NP⊥BC,交AC于點(diǎn)O,連接MP.已知?jiǎng)狱c(diǎn)運(yùn)動(dòng)了ts(0<t<3).
(1)當(dāng)t為多少時(shí),PM∥AB?
(2)若四邊形CDMP的面積為S,試求S與t的函數(shù)關(guān)系式.
(3)在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t使四邊形CDMP面積與四邊形ABCD面積比為3:8?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由.
(4)在點(diǎn)M,N運(yùn)動(dòng)過(guò)程中,△MPA能否成為一個(gè)等腰三角形?若能,求出所有可能的t值;若不能,試說(shuō)明理由.
【答案】(1)當(dāng)t=時(shí),PM∥AB;(2)s=t2﹣2t+6;(3)t=時(shí)四邊形CDMP的面積與四邊形ABCD的面積比為3:8;(4)當(dāng)t=1或t=或t=時(shí),△MPA是等腰三角形.
【解析】
(1)根據(jù)已知條件得到PM與PN共直線(xiàn),求得MN∥AB,列方程即可得到結(jié)論;
(2)延長(zhǎng)NP交AD于點(diǎn)Q,則PQ⊥AD,由△PNC∽△ABC得即根據(jù)S四邊形CDMP=S△ACD﹣S△AMP可得;
(3)由解方程可得;
(4)本題要分三種情況:①MP=PA,那么AQ=BN=AM,可用x分別表示出BN和AM的長(zhǎng),然后根據(jù)上述等量關(guān)系可求得x的值.②MA=MP,在直角三角形MQP中,MQ=MA﹣BN,PQ=AB﹣PN根據(jù)勾股定理即可求出x的值.③MA=PA,不難得出AP=BN,然后用x表示出AM的長(zhǎng),即可求出x的值.
解:(1)∵PM∥AB,AB∥PN,
∴PM與PN共直線(xiàn),
∴MN∥AB,
∴AM=NB,
∴3﹣t=t,
得
(2)如圖,延長(zhǎng)NP交AD于點(diǎn)Q,則PQ⊥AD,
由題意知,DM=BN=t,AM=CN=3﹣t,
∵PN∥AB,
∴△PNC∽△ABC,
∴即
解得:
∵PQ⊥AD,
∴∠QAB=∠B=∠NQA=90°,
∴四邊形ABNQ是矩形,
則AB=QN=4,
∴
∴四邊形CDMP的面積
(3)∵S矩形ABCD=3×4=12,
∴
解得:
所以時(shí)四邊形CDMP的面積與四邊形ABCD的面積比為3:8;
(4)△MPA能成為等腰三角形,共有三種情況,以下分類(lèi)說(shuō)明:
①若PM=PA,
∵PQ⊥MA,
∴四邊形ABNQ是矩形,
∴QA=NB=t,
∴MQ=QA=t,
又∵DM+MQ+QA=AD
∴3t=3,即t=1
②若MP=MA,則MQ=3﹣2t, MP=MA=3﹣t,
在Rt△PMQ中,由勾股定理得:MP2=MQ2+PQ2
∴
解得:t=(t=0不合題意,舍去)
③若AP=AM,
由題意可得:AP=t,AM=3﹣t
∴
解得:t=,
綜上所述,當(dāng)t=1或t=或t=時(shí),△MPA是等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的邊長(zhǎng)為4cm,∠A=60°,弧BD是以點(diǎn)A為圓心,AB長(zhǎng)為半徑的弧,弧CD是以點(diǎn)B為圓心,BC長(zhǎng)為半徑的弧,則陰影部分的面積為( 。
A. 2cm2B. 4cm2C. 4cm2D. πcm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校在一次大課間活動(dòng)中,采用了四鐘活動(dòng)形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學(xué)生都選擇了一種形式參與活動(dòng),小杰對(duì)同學(xué)們選用的活動(dòng)形式進(jìn)行了隨機(jī)抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計(jì)結(jié)果,繪制了不完整的統(tǒng)計(jì)圖.
請(qǐng)結(jié)合統(tǒng)計(jì)圖,回答下列問(wèn)題:
(1)本次調(diào)查學(xué)生共 人, = ,并將條形圖補(bǔ)充完整;
(2)如果該校有學(xué)生2000人,請(qǐng)你估計(jì)該校選擇“跑步”這種活動(dòng)的學(xué)生約有多少人?
(3)學(xué)校讓每班在A、B、C、D四鐘活動(dòng)形式中,隨機(jī)抽取兩種開(kāi)展活動(dòng),請(qǐng)用樹(shù)狀圖或列表的方法,求每班抽取的兩種形式恰好是“跑步”和“跳繩”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)半徑為2的⊙O外一點(diǎn)P,作⊙O的切線(xiàn)PA,切點(diǎn)為A,連接PO,交⊙O于點(diǎn)C,過(guò)點(diǎn)A作⊙O的弦AB,使AB∥PO,連接PB、BC.
(1)當(dāng)點(diǎn)C是PO的中點(diǎn)時(shí),
①求證:四邊形PABC是平行四邊形;
②求△PAB的面積.
(2)當(dāng)AB=2時(shí),請(qǐng)直接寫(xiě)出PC的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】共享單車(chē)為人們的生活帶來(lái)了極大的便利.如圖,一輛單車(chē)放在水平的地面上,車(chē)把頭下方A處與坐墊下方B處在平行于地面的水平線(xiàn)上,A,B之間的距離為49cm,現(xiàn)測(cè)得AC,BC與AB的夾角分別為45°,68°.若點(diǎn)C到地面的距離CD為28cm,坐墊中軸E處與點(diǎn)B的距離BE為5cm,求點(diǎn)E到地面的距離.(結(jié)果保留一位小數(shù),參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,tan68°≈2.50.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示的是午休時(shí)老師們所用的一種折疊椅,現(xiàn)將躺椅以如圖2所示的方式傾斜放置,AM與地面ME成45°角,AB∥ME,椅背BC與水平線(xiàn)成30°角,其中AM=50厘米,BC=72厘米,BP是躺椅的伸縮支架,且30°≤BPM≤90°.(結(jié)果精確到1厘米;參考數(shù)據(jù)≈1.4,≈ 1.7,≈ 2.2)
(1)求此時(shí)點(diǎn)C與地面的距離.
(2)在(1)的條件下,求伸縮支架BP可達(dá)到的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以矩形ABOD的兩邊OD、OB為坐標(biāo)軸建立直角坐標(biāo)系,若E是AD的中點(diǎn),將△ABE沿BE折疊后得到△GBE,延長(zhǎng)BG交OD于F點(diǎn).若OF=I,FD=2,則G點(diǎn)的坐標(biāo)為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A(﹣1,0),對(duì)稱(chēng)軸為直線(xiàn)x=1,與y軸的交點(diǎn)B在(0,2)和(0,3)之間(包括這兩點(diǎn)),下列結(jié)論:
①當(dāng)x>3時(shí),y<0;②3a+b<0;③﹣1≤a≤﹣;④4ac﹣b2>8a;
其中正確的結(jié)論是( )
A.①③④ B.①②③ C.①②④ D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,△ABC中,∠ACB=90°,AC=BC=8,點(diǎn)A在半徑為5的⊙O上,點(diǎn)O在直線(xiàn)l上.
(1)如圖①,若⊙O經(jīng)過(guò)點(diǎn)C,交BC于點(diǎn)D,求CD的長(zhǎng).
(2)在(1)的條件下,若BC邊交l于點(diǎn)E,OE=2,求BE的長(zhǎng).
(3)如圖②,若直線(xiàn)l還經(jīng)過(guò)點(diǎn)C,BC是⊙O 的切線(xiàn),F為切點(diǎn),則CF的長(zhǎng)為____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com