已知△ABC∽△DEF,△ABC的面積為1,△DEF的面積為4,則△ABC與△DEF的周長之比為( 。
A、1:2B、1:4
C、2:1D、4:1
考點:相似三角形的性質(zhì)
專題:計算題
分析:根據(jù)相似三角形的面積的比等于相似比的平方求解.
解答:解:∵△ABC∽△DEF,
∴△ABC的面積:△DEF的面積=△ABC與△DEF的周長之比的平方,
而△ABC的面積為1,△DEF的面積為4,
∴△ABC與△DEF的周長之比=1:2.
故選A.
點評:本題考查了相似三角形的性質(zhì):相似三角形的對應(yīng)角相等,對應(yīng)邊的比相等;相似三角形(多邊形)的周長的比等于相似比;相似三角形的對應(yīng)線段(對應(yīng)中線、對應(yīng)角平分線、對應(yīng)邊上的高)的比也等于相似比;相似三角形的面積的比等于相似比的平方.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

2013年8月中旬,重慶迎來了持續(xù)高溫天氣,某一周的最高氣溫分別為(單位:℃):38、39、39、40、40、38、39.則這組數(shù)據(jù)的眾數(shù)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

392
×
27
÷
63
=
 
(結(jié)果用根式的形式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

點A(2,3)向左平移3個單位長度得到點A′,則點A′的坐標(biāo)為(  )
A、(2,0)
B、(-1,3)
C、(-2,3)
D、(5,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面內(nèi),⊙O的半徑為2cm,圓心O到直線l的距離為3cm,則直線l與⊙O的位置關(guān)系是( 。
A、內(nèi)含B、相交C、相切D、相離

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知⊙O1和⊙O2的半徑分別為3和5,圓心距O1O2=2,則⊙O1和⊙O2的位置關(guān)系是(  )
A、外離B、外切C、相交D、內(nèi)切

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△ABO的斜邊AB=4,∠A=30°,將△ABO繞點O順時針旋轉(zhuǎn)90°至三角板A′B′O的位置,再沿OB方向平移,使點B′落在反比例函數(shù)y=
-6
x
上,則三角板A′B′O平移的距離為( 。
A、4cm
B、2
3
C、3cm
D、(4,2
3
)cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,點C是等腰直角△ABC的直角頂點,DC∥AB,BD=AB,BD交AC于點E,CF⊥AB,垂足為F,求證:
(1)∠ABD=30°;
(2)AD=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點B、F、C、E在同一條直線上,F(xiàn)B=CE,AB∥ED,AC∥FD.
(1)求證:AB=DE、AC=DF;
(2)若BC=6,△ABC的面積是12,點F在線段BC上,BF=x,四邊形ABDE的面積為y,求y與x的函數(shù)關(guān)系式,并求函數(shù)值y的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案