【問題提出】
學習了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對“兩個三角形滿足兩邊和其中一邊的對角對應相等”的情形進行研究.
【初步思考】
我們不妨將問題用符號語言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,對∠B進行分類,可分為“∠B是直角、鈍角、銳角”三種情況進行探究.
【深入探究】
第一種情況:當∠B是直角時,△ABC≌△DEF.
(1)如圖①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根據(jù) ,可以知道Rt△ABC≌Rt△DEF.
第二種情況:當∠B是鈍角時,△ABC≌△DEF.
(2)如圖②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是鈍角,求證:△ABC≌△DEF.
第三種情況:當∠B是銳角時,△ABC和△DEF不一定全等.
(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,請你用尺規(guī)在圖③中作出△DEF,使△DEF和△ABC不全等.(不寫作法,保留作圖痕跡)
(4)∠B還要滿足什么條件,就可以使△ABC≌△DEF?請直接寫出結(jié)論:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,若 ,則△ABC≌△DEF.
(1)HL;(2)證明見解析;(3)作圖見解析;(4)∠B≥∠A.
【解析】
試題分析:(1)根據(jù)直角三角形全等的方法“HL”證明.
(2)過點C作CG⊥AB交AB的延長線于G,過點F作DH⊥DE交DE的延長線于H,根據(jù)等角的補角相等求出∠CBG=∠FEH,再利用“角角邊”證明△CBG和△FEH全等,根據(jù)全等三角形對應邊相等可得CG=FH,再利用“HL”證明Rt△ACG和Rt△DFH全等,根據(jù)全等三角形對應角相等可得∠A=∠D,然后利用“角角邊”證明△ABC和△DEF全等.
(3)以點C為圓心,以AC長為半徑畫弧,與AB相交于點D,E與B重合,F(xiàn)與C重合,得到△DEF與△ABC不全等.
(4)根據(jù)三種情況結(jié)論,∠B不小于∠A即可.
試題解析:
(2)如圖,過點C作CG⊥AB交AB的延長線于G,過點F作DH⊥DE交DE的延長線于H,
∵∠B=∠E,且∠B、∠E都是鈍角,∴180°-∠B=180°-∠E,即∠CBG=∠FEH.
在△CBG和△FEH中,,∴△CBG≌△FEH(AAS).∴CG=FH.
在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL).∴∠A=∠D.
在△ABC和△DEF中,,∴△ABC≌△DEF(AAS).
(3)如圖,△DEF和△ABC不全等.
(4)若∠B≥∠A,則△ABC≌△DEF.
考點:1.探究型問題;2.全等三角形的判定和性質(zhì);3.作圖—應用與設計作圖.
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(江蘇徐州卷)數(shù)學(解析版) 題型:填空題
如圖,在等腰三角形紙片ABC中,AB=AC,∠A=50°,折疊該紙片,使點A落在點B處,折痕為DE,則∠CBE= °.
查看答案和解析>>
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(江蘇常州卷)數(shù)學(解析版) 題型:選擇題
下列立體圖形中,側(cè)面展開圖是扇形的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(江蘇宿遷卷)數(shù)學(解析版) 題型:填空題
一塊矩形菜地的面積是120m2,如果它的長減少2cm,那么菜地就變成正方形,則原菜地的長是 m.
查看答案和解析>>
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(江蘇宿遷卷)數(shù)學(解析版) 題型:選擇題
若一個圓錐的主視圖是腰長為5,底邊長為6的等腰三角形,則該圓錐的側(cè)面積是( )
A.15π B.20π C.24π D.30π
查看答案和解析>>
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(江蘇南京卷)數(shù)學(解析版) 題型:解答題
某養(yǎng)殖戶每年的養(yǎng)殖成本包括固定成本和可變成本,其中固定成本每年均為4萬元,可變成本逐年增長,已知該養(yǎng)殖戶第一年的可變成本為2.6萬元,設可變成本平均每年增長的百分率為
(1)用含x的代數(shù)式表示低3年的可變成本為 萬元;
(2)如果該養(yǎng)殖戶第3年的養(yǎng)殖成本為7.146萬元,求可變成本平均每年的增長百分率x.
查看答案和解析>>
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(江蘇南京卷)數(shù)學(解析版) 題型:填空題
鐵路部門規(guī)定旅客免費攜帶行李箱的長寬高之和不超過160cm,某廠家生產(chǎn)符合該規(guī)定的行李箱,已知行李箱的高為30cm,長與寬之比為3:2,則該行李箱長度的最大值是 cm.
查看答案和解析>>
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(廣西賀州卷)數(shù)學(解析版) 題型:解答題
如圖,一艘海輪在A點時測得燈塔C在它的北偏東42°方向上,它沿正東方向航行80海里后到達B處,此時燈塔C在它的北偏西55°方向上.
(1)求海輪在航行過程中與燈塔C的最短距離(結(jié)果精確到0.1);
(2)求海輪在B處時與燈塔C的距離(結(jié)果保留整數(shù)).
(參考數(shù)據(jù):sin55°≈0.819,cos55°≈0.574,tan55°≈1.428,tan42°≈0.900,tan35°≈0.700,tan48°≈1.111)
查看答案和解析>>
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(廣西百色卷)數(shù)學(解析版) 題型:選擇題
從一棟二層樓的樓頂點A處看對面的教學樓,探測器顯示,看到教學樓底部點C處的俯角為45°,看到樓頂部點D處的仰角為60°,已知兩棟樓之間的水平距離為6米,則教學樓的高CD是( 。
A.(6+6)米 B.(6+3)米 C.(6+2)米 D.12米
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com