【題目】如圖,正方形ABCD中,AB4,點(diǎn)E是對(duì)角線AC上的一點(diǎn),連接DE.過點(diǎn)EEFED,交AB于點(diǎn)F,以DE、EF為鄰邊作矩形DEFG,連接AG

1)求證:矩形DEFG是正方形;

2)求AG+AE的值;

3)若F恰為AB中點(diǎn),連接DFAC于點(diǎn)M,請(qǐng)直接寫出ME的長(zhǎng).

【答案】1)見解析;(2AE+AG==4;(3EM

【解析】

1)如圖,作EMADM,ENABN.只要證明EMD≌△ENF即可解決問題;
2)只要證明ADG≌△CDE,可得AG=EC即可解決問題;
3)如圖,作EHDFH.想辦法求出EH,HM即可解決問題;

1)如圖,作EMADMENABN

∵四邊形ABCD是正方形,

∴∠EAD=∠EAB,

EMADM,ENABN,

EMEN,

∵∠EMA=∠ENA=∠DAB90°

∴四邊形ANEM是矩形,

∴∠MEN=∠DEF90°,

∴∠DEM=∠FEN,

∵∠EMD=∠ENF90°,

∴△EMD≌△ENF,

EDEF

∵四邊形DEFG是矩形,

∴四邊形DEFG是正方形.

2)∵四邊形DEFG是正方形,四邊形ABCD是正方形,

DGDE,DCDAAB4,∠GDE=∠ADC90°,

∴∠ADG=∠CDE,

∴△ADG≌△CDE,

AGCE,

AE+AGAE+ECACAD4

3)如圖,作EHDFH

∵四邊形ABCD是正方形,

ABAD4,ABCD,

FAB中點(diǎn),

AFFB

DF,

∵△DEF是等腰直角三角形,EHAD,

DHHF,

EHDF,

AFCD,

AFCDFMMD12,

FM,

HMHFFM,

RtEHM中,EM

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖山坡上有一根旗桿AB,旗桿底部B點(diǎn)到山腳C點(diǎn)的距離BC米,斜坡BC的坡度i=1 .小明在山腳的平地F處測(cè)量旗桿的高,點(diǎn)C到測(cè)角儀EF的水平距離CF=1米,從E處測(cè)得旗桿頂部A的仰角為45°,旗桿底部B的仰角為20°

1)求坡角∠BCD;

2)求旗桿AB的高度.

(參考數(shù)值:sin20°≈0.34cos20°≈0.94,tan20°≈0.36

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某城市居民用水實(shí)行階梯收費(fèi),每戶每月用水量如果未超過20噸,按每噸元收費(fèi)如果超過20噸,未超過的部分按每噸元收費(fèi),超過的部分按每噸元收費(fèi)設(shè)某戶每月用水量為x噸,應(yīng)收水費(fèi)為y元.

設(shè)某戶居民每月用水量為m,則應(yīng)收水費(fèi)為______用含m的代數(shù)式表示

設(shè)某戶居民每月用水量為m,則應(yīng)收水費(fèi)為______用含m的代數(shù)式表示;

若該城市某戶5月份水費(fèi)平均為每噸元,求該戶5月份用水多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,AD為等腰直角ABC的高,點(diǎn)A和點(diǎn)C分別在正方形DEFG的邊DGDE上,連接BG、AE.

(1)求證:BG=AE;

(2)將正方形DEFG繞點(diǎn)D旋轉(zhuǎn),當(dāng)線段EG經(jīng)過點(diǎn)A時(shí),(如圖②所示)

①求證:BGGE;

②設(shè)DGAB交于點(diǎn)M,若AG=6,AE=8,求DM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)批發(fā)兼零售的文具店規(guī)定:凡一次購(gòu)買鉛筆300枝以上,(不包括300枝),可以按批發(fā)價(jià)付款,購(gòu)買300枝以下,(包括300枝)只能按零售價(jià)付款。小明來該店購(gòu)買鉛筆,如果給八年級(jí)學(xué)生每人購(gòu)買1枝,那么只能按零售價(jià)付款,需用120元,如果購(gòu)買60枝,那么可以按批發(fā)價(jià)付款,同樣需要120元,

1) 這個(gè)八年級(jí)的學(xué)生總數(shù)在什么范圍內(nèi)?

2) 若按批發(fā)價(jià)購(gòu)買6枝與按零售價(jià)購(gòu)買5枝的款相同,那么這個(gè)學(xué)校八年級(jí)學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某日的錢塘江觀潮信息如圖:

按上述信息,小紅將交叉潮形成后潮頭與乙地之間的距離s(千米)與時(shí)間t(分鐘)的函數(shù)關(guān)系用圖3表示,其中:“11:40時(shí)甲地交叉潮的潮頭離乙地12千米記為點(diǎn)A(0,12),點(diǎn)B坐標(biāo)為(m,0),曲線BC可用二次函數(shù)s=t2+bt+c(b,c是常數(shù))刻畫.

(1)求m的值,并求出潮頭從甲地到乙地的速度;

(2)11:59時(shí),小紅騎單車從乙地出發(fā),沿江邊公路以0.48千米/分的速度往甲地方向去看潮,問她幾分鐘后與潮頭相遇?

(3)相遇后,小紅立即調(diào)轉(zhuǎn)車頭,沿江邊公路按潮頭速度與潮頭并行,但潮頭過乙地后均勻加速,而單車最高速度為0.48千米/分,小紅逐漸落后.問小紅與潮頭相遇到落后潮頭1.8千米共需多長(zhǎng)時(shí)間?(潮水加速階段速度v=v0+(t﹣30),v0是加速前的速度).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某次籃球聯(lián)賽共有十支隊(duì)伍參賽,部分積分表如下.根據(jù)表格提供的信息解答下列問題:

隊(duì)名

比賽場(chǎng)次

勝場(chǎng)

負(fù)場(chǎng)

積分

A

18

14

4

32

B

18

11

7

29

C

18

9

9

27

1)列一元一次方程求出勝一場(chǎng)、負(fù)一場(chǎng)各積多少分?

2)某隊(duì)的勝場(chǎng)總積分能等于它的負(fù)場(chǎng)總積分嗎?若能,試求勝場(chǎng)數(shù)和負(fù)場(chǎng)數(shù);若不能,說出理由.

3)試就某隊(duì)的勝場(chǎng)數(shù)求出該隊(duì)的負(fù)場(chǎng)總積分是它的勝場(chǎng)總積分的正整數(shù)倍的情況?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某長(zhǎng)方形廣場(chǎng)的四角都有一塊半徑相同的圓形的草地,已知圓形的半徑為r米,長(zhǎng)方形長(zhǎng)為a米,寬為b米.

(1)請(qǐng)式表示廣場(chǎng)空地的面積;

(2)若長(zhǎng)方形的長(zhǎng)為300米,寬為200米,圓形的半徑為10米,計(jì)算廣場(chǎng)空地的面積(計(jì)算結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=kx+b經(jīng)過點(diǎn)A-5,0),B-1,4

1)求直線AB的表達(dá)式;

2)求直線CEy=-2x-4與直線ABy軸圍成圖形的面積;

3)根據(jù)圖象,直接寫出關(guān)于x的不等式kx+b-2x-4的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案