【題目】一個批發(fā)兼零售的文具店規(guī)定:凡一次購買鉛筆300枝以上,(不包括300枝),可以按批發(fā)價付款,購買300枝以下,(包括300枝)只能按零售價付款。小明來該店購買鉛筆,如果給八年級學生每人購買1枝,那么只能按零售價付款,需用120元,如果購買60枝,那么可以按批發(fā)價付款,同樣需要120元,
(1) 這個八年級的學生總數在什么范圍內?
(2) 若按批發(fā)價購買6枝與按零售價購買5枝的款相同,那么這個學校八年級學生有多少人?
科目:初中數學 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,AB=3CD,AB∥CD,CE∥DA,DF∥CB.
(1)求證:四邊形CDEF是平行四邊形;
(2)填空:
①當四邊形ABCD滿足條件 時(僅需一個條件),四邊形CDEF是矩形;
②當四邊形ABCD滿足條件 時(僅需一個條件),四邊形CDEF是菱形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知一次函數與反比例函數的圖象相交于點,與x軸相交于點B.
填空:n的值為______,k的值為______;
以AB為邊作菱形ABCD,使點C在x軸正半軸上,點D在第一象限,求點D的坐標;
觀察反比例函數的圖象,當時,請直接寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在□ABCD中,E、F分別是AB、CD的中點,AF與DE相交于點G,CE與BF相交于點H.
(1)求證:四邊形EHFG是平行四邊形;
(2)□ABCD應滿足什么條件時,四邊形EHFG是矩形?并說明理由;
(3)□ABCD應滿足什么條件時,四邊形EHFG是正方形?(不要說明理由).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于點A(﹣1,0),B(3,0)兩點,與y軸交于點C(0,﹣3).
(1)求該拋物線的解析式及頂點M坐標;
(2)求△BCM面積與△ABC面積的比;
(3)若P是x軸上一個動點,過P作射線PQ∥AC交拋物線于點Q,隨著P點的運動,在拋物線上是否存在這樣的點Q,使以A,P,Q,C為頂點的四邊形為平行四邊形?若存在,請求出Q點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD中,AB=4,點E是對角線AC上的一點,連接DE.過點E作EF⊥ED,交AB于點F,以DE、EF為鄰邊作矩形DEFG,連接AG.
(1)求證:矩形DEFG是正方形;
(2)求AG+AE的值;
(3)若F恰為AB中點,連接DF交AC于點M,請直接寫出ME的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,我們知道,從A地到B地有四條道路,除它們外,可以再修一條從A地到B地的最短道路.解答下列問題:
(1)請你在圖上畫出最短線路?
(2)你這樣畫的理由是“兩點決定一條直線”呢,還是“兩點之間,線段最短”?
(3)如果已知三點A、B、C在同一條直線上,且AB=5,BC=2,求AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】借助一副三角板,可以得到一些平面圖形
(1)如圖1,∠AOC= 度.由射線OA,OB,OC組成的所有小于平角的和是多少度?
(2)如圖2,∠1的度數比∠2度數的3倍還多30°,求∠2的度數;
(3)利用圖3,反向延長射線OA到M,OE平分∠BOM,OF平分∠COM,請按題意補全圖(3),并求出∠EOF的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,已知和的頂點坐標分別為、、、、、.
按下列要求畫圖:以點為位似中心,將向軸左側按比例尺放大得的位似圖形,并解決下列問題:
(1)頂點的坐標為 , 的坐標為 , 的坐標為 ;
(2)請你利用旋轉、平移兩種變換,使通過變換后得到,且 恰與拼接成一個平行四邊形 (非正方形).寫出符合要求的變換過程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com