【題目】北京世界園藝博覽會(簡稱“世園會”)園區(qū)4月29日正式開園,門票價(jià)格如下:
票種 | 票價(jià)(元/人) | |
指定日 | 普通票 | 160 |
優(yōu)惠票 | 100 | |
平日 | 普通票 | 120 |
優(yōu)惠票 | 80 |
注1:“指定日”為開園日(4月29日)、五一勞動(dòng)節(jié)(5月1日)、端午節(jié)、中秋節(jié)、十一假期(含閉園日),“平日”為世園會會期除“指定日”外的其他日期;
注2:六十周歲及以上老人、十八周歲以下的學(xué)生均可購買優(yōu)惠票;
注3:提前兩天及以上在線上購買世園會門票,票價(jià)可打九折,但僅限于普通票.
某大家庭計(jì)劃在6月1日集體入園參觀游覽,通過計(jì)算發(fā)現(xiàn):若提前兩天線上購票所需費(fèi)用為996元,而入園當(dāng)天購票所需費(fèi)用為1080元,則該家庭中可以購買優(yōu)惠票的有______人.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,CB=2,CA=4,線段AD由線段AB繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)90°得到,△EFG由△ABC沿CB方向平移得到,當(dāng)直線EF恰好經(jīng)過點(diǎn)D時(shí),CG的長等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等邊三角形中,為中線,點(diǎn)在線段上運(yùn)動(dòng),將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn),使得點(diǎn)的對應(yīng)點(diǎn)落在射線上,連接,設(shè)(且).
(1)當(dāng)時(shí),
①在圖1中依題意畫出圖形,并求(用含的式子表示);
②探究線段,,之間的數(shù)量關(guān)系,并加以證明;
(2)當(dāng)時(shí),直接寫出線段,,之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了幫助市內(nèi)一名患“白血病”的中學(xué)生,東營市某學(xué)校數(shù)學(xué)社團(tuán)15名同學(xué)積極捐款,捐款情況如下表所示,下列說法正確的是( 。
捐款數(shù)額 | 10 | 20 | 30 | 50 | 100 |
人數(shù) | 2 | 4 | 5 | 3 | 1 |
A. 眾數(shù)是100 B. 中位數(shù)是30 C. 極差是20 D. 平均數(shù)是30
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所在相同條件下做某作物種子發(fā)芽率的實(shí)驗(yàn),結(jié)果如表所示:
種子個(gè)數(shù) | 200 | 300 | 500 | 700 | 800 | 900 | 1000 |
發(fā)芽種子個(gè)數(shù) | 187 | 282 | 435 | 624 | 718 | 814 | 901 |
發(fā)芽種子頻率 | 0.935 | 0.940 | 0.870 | 0.891 | 0.898 | 0.904 | 0.901 |
下面有四個(gè)推斷:①種子個(gè)數(shù)是700時(shí),發(fā)芽種子的個(gè)數(shù)是624.所以種子發(fā)芽的概率是0.891;②隨著參加實(shí)驗(yàn)的種子數(shù)量的增加,發(fā)芽種子的頻率在0.9附近擺動(dòng),顯示出一定的穩(wěn)定性.可以估計(jì)種子發(fā)芽的概率約為0.9(精確到0.1);③實(shí)驗(yàn)的種子個(gè)數(shù)最多的那次實(shí)驗(yàn)得到的發(fā)芽種子的頻率一定是種子發(fā)芽的概率;④若用頻率估計(jì)種子發(fā)芽的概率約為0.9,則可以估計(jì)種子大約有的種子不能發(fā)芽.其中合理的是( )
A.①②B.③④C.②③D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個(gè)二次函數(shù)滿足以下條件:
①函數(shù)圖象與x軸的交點(diǎn)坐標(biāo)分別為A(1,0),B(x2,y2)(點(diǎn)B在點(diǎn)A的右側(cè));
②對稱軸是x=3;
③該函數(shù)有最小值是﹣2.
(1)請根據(jù)以上信息求出二次函數(shù)表達(dá)式;
(2)將該函數(shù)圖象x>x2的部分圖象向下翻折與原圖象未翻折的部分組成圖象“G”,平行于x軸的直線與圖象“G”相交于點(diǎn)C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),結(jié)合畫出的函數(shù)圖象求x3+x4+x5的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)M的坐標(biāo)為,點(diǎn)N的坐標(biāo)為,且,,我們規(guī)定:如果存在點(diǎn)P,使是以線段MN為直角邊的等腰直角三角形,那么稱點(diǎn)P為點(diǎn)M、N的“和諧點(diǎn)”.
(1)已知點(diǎn)A的坐標(biāo)為,
①若點(diǎn)B的坐標(biāo)為,在直線AB的上方,存在點(diǎn)A,B的“和諧點(diǎn)”C,直接寫出點(diǎn)C的坐標(biāo);
②點(diǎn)C在直線x=5上,且點(diǎn)C為點(diǎn)A,B的“和諧點(diǎn)”,求直線AC的表達(dá)式.
(2)⊙O的半徑為r,點(diǎn)為點(diǎn)、的“和諧點(diǎn)”,且DE=2,若使得與⊙O有交點(diǎn),畫出示意圖直接寫出半徑r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲打字員計(jì)劃用若干小時(shí)完成文稿的電腦輸入工作,兩小時(shí)后,乙打字員協(xié)助此項(xiàng)工作,且乙打字員文稿電腦輸入的速度是甲的1.5倍,結(jié)果提前6小時(shí)完成任務(wù),則甲打字員原計(jì)劃完成此項(xiàng)工作的時(shí)間是( 。
A.17小時(shí)B.14小時(shí)C.12小時(shí)D.10小時(shí)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校需要購買A、B兩種品牌的籃球,購買A種品牌的籃球30個(gè),B種品牌的籃球20個(gè),共花費(fèi)5400元,已知購買一個(gè)B種品牌的籃球比購買一個(gè)A鐘品牌的籃球多花20元.
(1)求購買一個(gè)A種品牌、一個(gè)B種品牌的籃球各需多少元?
(2)學(xué)校為了響應(yīng)習(xí)“籃球進(jìn)校園”的號召,決定再次購進(jìn)A、B兩種品牌球共45個(gè),正好是上商場對商品的促銷活動(dòng),A品牌籃球售價(jià)比第一次購買時(shí)降低19元,B品牌籃球按第一次購買時(shí)售價(jià)的9折出售,如果學(xué)校此次購買A、B兩種品牌籃球的總費(fèi)用不超過第一次花費(fèi)的80%,且保證這次購買的B種品牌籃球不少于15個(gè),則這次學(xué)校有幾種購買方案?
(3)學(xué)校在第二次購買活動(dòng)中至少需要多少資金?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com