【題目】ABC中,最小內(nèi)角∠B24°,若ABC被一直線分割成兩個等腰三角形,如圖為其中一種分割法,此時ABC中的最大內(nèi)角為90°,那么其它分割法中,ABC中的最大內(nèi)角度數(shù)為_____

【答案】117°或108°或84°.

【解析】

根據(jù)等腰三角形的性質(zhì)進行分割,寫出ABC中的最大內(nèi)角的所有可能值.

①∠BAD=∠BDA180°﹣24°)=78°,∠DAC=∠DCABDA39°,如圖1所示:

∴∠BAC78°+39°=117°;

②∠DBA=∠DAB24°,∠ADC=∠ACD2DBA48°,如圖2所示:

∴∠DAC180°﹣2×48°=84°,

∴∠BAC24°+84°=108°;

③∠DBA=∠DAB24°,∠ADC=∠DAC2DBA48°,如圖3所示:

∴∠BAC24°+48°=72°,∠C180°﹣2×48°=84°;

∴其它分割法中,△ABC中的最大內(nèi)角度數(shù)為117°或108°或84°,

故答案為:117°或108°或84°.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某中學有一塊四邊形的空地ABCD,學校計劃在空地上種植草皮,經(jīng)測量∠A90°AB3m,BC12mCD13m,DA4m

1)求這塊四邊形空地的面積;

2)若每平方米草皮需要200元,問學校需要投入多少資金買草皮?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊△ABC中,D、E分別是BC、AC上的動點且BD=CE,連接ADBE相交于點F,連接CF,下列結(jié)論:①△ABD≌△BCE;②∠AFB=120°;③若BD=CD,則FA=FB=FC;④∠AFC=90°,則AF=3BF,其中正確的結(jié)論共有( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,且面積是24,的垂直平分線分別交邊于點,若點邊的中點,點為線段上一動點,則周長的最小值為(

A.9B.10C.11D.12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,四邊形中,,點分別在邊上,且,求證:.

2)如圖2,四邊形中,,點在邊上,連接平分于點,,,連接.

①找出圖中與相等的線段,并加以證明;

②求的度數(shù)(用含的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠ABC=∠ACB,點DBC所在的直線上,點E在射線AC上,且AD=AE,連接DE

如圖①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度數(shù);

如圖②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度數(shù);

當點D在直線BC上(不與點B、C重合)運動時,試探究∠BAD與∠CDE的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形(長方形)沿折疊,使點與點重合,點落在處,連接,則下列結(jié)論:①,②,③,④,三點在同一直線上,其中正確的是(

A.①②③B.①③④C.②③④D.①②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】蜀山區(qū)植物園是一座三面環(huán)水的半島園區(qū),擁有梅園、桂花園、竹園、木蘭園、水景園等示范區(qū)。為了種植植物,需要從甲乙兩地向園區(qū)AB兩個大棚配送營養(yǎng)土,已知甲地可調(diào)出50噸營養(yǎng)土,乙地可調(diào)出80噸營養(yǎng)土,A棚需70噸營養(yǎng)土,B棚需60噸營養(yǎng)土,甲乙兩地運往A,B兩棚的運費如下表所示(表中運費欄“元/噸”表示運送每噸營養(yǎng)土所需費用)。

運費(元/噸)

A

B

甲地

12

12

乙地

10

8

運往A、B兩地的噸數(shù)

A

B

甲地

x

50-x

乙地

1)設(shè)甲地運往A棚營養(yǎng)土x噸,請用關(guān)于x的代數(shù)式完成上表;

2)設(shè)甲地運往A棚營養(yǎng)土x噸,求總運費y(元)關(guān)于x(噸)的函數(shù)關(guān)系式(要求寫出變量取值范圍);

3)當甲、乙兩地各運往A、B兩棚多少噸營養(yǎng)土時,總運費最。孔钍〉目傔\費是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知內(nèi)接于平分,交于點,過的切線與的延長線交于點

求證:;

,求的長;

在題設(shè)條件下,為使是平行四邊形,應(yīng)滿足怎樣的條件(不要求證明).

查看答案和解析>>

同步練習冊答案