已知在平面直角坐標系xoy中,二次函數(shù)y=-2x²+bx+c的圖像經(jīng)過點A(-3,0)和點B(0,6)。(1)求此二次函數(shù)的解析式;(2)將這個二次函數(shù)的圖像向右平移5個單位后的頂點設為C,直線BC與x軸相交于點D,求∠sin∠ABD;(3)在第(2)小題的條件下,連接OC,試探究直線AB與OC的位置關系,并且說明理由。

(1)y=-2x2-4x+6;(2)sin∠ABD=;(3)略.

解析試題分析:(1)把點A、B的坐標代入函數(shù)解析式計算求出b、c的值,即可得解;
(2)先求出拋物線的頂點坐標,再根據(jù)向右平移橫坐標加,求出點C的坐標,設直線BC的解析式為y=kx+b(k≠0),然后利用待定系數(shù)法求出直線BC的解析式,再求出與x軸的交點D的坐標,過點A作AH⊥BD于H,先求出OD,再利用勾股定理列式求出BD,然后求出△ADH和△BDO相似,利用相似三角形對應邊成比例列式求出AH,再利用勾股定理,然后根據(jù)銳角的正弦等于對邊比斜邊列式計算即可得解;
(3)過點C作CP⊥x軸于P,分別求出∠BAO和∠COP的正切值,根據(jù)正切值相等求出∠BAO=∠COP,再根據(jù)同位角相等,兩直線平行解答.
試題解析:(1)由題意得, ?2×9?3b+c=0 c=6  ,
解得 b=?4 c=6  ,
所以,此二次函數(shù)的解析式為y=-2x2-4x+6;
(2)∵y=-2x2-4x+6=-2(x+1)2+8,
∴函數(shù)y=2x2-4x+6的頂點坐標為(-1,8),
∴向右平移5個單位的后的頂點C(4,8),
設直線BC的解析式為y=kx+b(k≠0),
,
解得 ,
所以,直線BC的解析式為y=x+6,
令y=0,則x+6=0,
解得x=-12,
∴點D的坐標為(-12,0),
過點A作AH⊥BD于H,
OD=12,BD=,
AD=-3-(-12)=-3+12=9,
∵∠ADH=∠BDO,∠AHD=∠BOD=90°,
∴△ADH∽△BDO,
∴AH:OB ="AD:BD" ,
即AH:6 =9:,
解得AH=,
∵AB=,
∴sin∠ABD=
(3)過點C作CP⊥x軸于P,
由題意得,CP=8,PO=4,AO=3,BO=6,
∴tan∠COP==2,
tan∠BAO==2,
∴tan∠COP=tan∠BAO,
∴∠BAO=∠COP,
∴AB∥OC.

考點:二次函數(shù)綜合題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

已知某商品的進價為每件40元,售價是每件60元,每星期可賣出300件。市場調(diào)查反映:如調(diào)整價格 ,每漲價一元,每星期要少賣出10件。該商品應定價為多少元時,商場能獲得最大利潤?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖所示,直線l:y=3x+3與x軸交于點A,與y軸交于點B.把△AOB沿y軸翻折,點A落到點C,拋物線過點B、C和D(3,0).

(1)求直線BD和拋物線的解析式.
(2)若BD與拋物線的對稱軸交于點M,點N在坐標軸上,以點N、B、D為頂點的三角形與△MCD相似,求所有滿足條件的點N的坐標.
(3)在拋物線上是否存在點P,使SPBD=6?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知二次函數(shù)y=ax2+bx+3的圖象過點A(-1,0),對稱軸為過點(1,0)且與y軸平行的直線.

(1)求點B的坐標
(2)求該二次函數(shù)的關系式;
(3)結(jié)合圖象,解答下列問題:
①當x取什么值時,該函數(shù)的圖象在x軸上方?
②當-1<x<2時,求函數(shù)y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系xOy中,一次函數(shù)y=x+m (m為常數(shù))的圖像與x軸交于點A(-3,0),與y軸交于點C.以直線x=1為對稱軸的拋物線y=ax2+bx+c(a,b,c為常數(shù),且a≠0)經(jīng)過A、C兩點,并與x軸的正半軸交于點B.

(1)求m的值及拋物線的函數(shù)表達式;
(2)若P是拋物線對稱軸上一動點,△ACP周長最小時,求出P的坐標;
(3)是否存在拋物在線一動點Q,使得△ACQ是以AC為直角邊的直角三角形?若存在,求出點Q的橫坐標;若不存在,請說明理由;
(4)在(2)的條件下過點P任意作一條與y軸不平行的直線交拋物線于M1(x1,y1),M2(x2,y2)兩點,試問是否為定值,如果是,請直接寫出結(jié)果,如果不是請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在直角坐標平面內(nèi),二次函數(shù)圖象的頂點為A(1,﹣4),且過點B(3,0).

(1)求該二次函數(shù)的解析式;
(2)將該二次函數(shù)圖象向右平移幾個單位,可使平移后所得圖象經(jīng)過坐標原點?并直接寫出平移后所得圖象與x軸的另一個交點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:拋物線經(jīng)過A(,0)、B(5,0)兩點,頂點為P.
求:(1)求b,c的值;
(2)求△ABP的面積;
(3)若點C(,)和點D()在該拋物線上,則當時,
請寫出的大小關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標為(4,﹣),且與y軸交于點C(0,2),與x軸交于A,B兩點(點A在點B的左邊).

(1)求拋物線的解析式及A、B兩點的坐標;
(2)在(1)中拋物線的對稱軸l上是否存在一點P,使AP+CP的值最。咳舸嬖,求AP+CP的最小值,若不存在,請說明理由;
(3)以AB為直徑的⊙M相切于點E,CE交x軸于點D,求直線CE的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

某公司經(jīng)銷一種綠茶,每千克成本為50元.市場調(diào)查發(fā)現(xiàn),在一段時間內(nèi),銷售量(千克)隨銷售單價(元/千克)的變化而變化,具體關系式為:,且物價部門規(guī)定這種綠茶的銷售單價不得高于90元/千克.設這種綠茶在這段時間內(nèi)的銷售利潤為(元),解答下列問題:
(1)求的關系式;
(2)當取何值時,的值最大?
(3)如果公司想要在這段時間內(nèi)獲得2 250元的銷售利潤,銷售單價應定為多少元?

查看答案和解析>>

同步練習冊答案