如圖,在直角梯形OABC中,CB∥OA,∠OAB=90°,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A在x軸的精英家教網(wǎng)正半軸上,對(duì)角線(xiàn)OB,AC相交于點(diǎn)M,OA=AB=4,OA=2CB.
(1)點(diǎn)C的坐標(biāo)為
 

(2)求△OCM的面積;
(3)若點(diǎn)E在過(guò)O,A,C三點(diǎn)的拋物線(xiàn)的對(duì)稱(chēng)軸上,點(diǎn)F為該拋物線(xiàn)上的點(diǎn),且以A,O,F(xiàn),E四點(diǎn)為頂點(diǎn)的四邊形為平行四邊形,求點(diǎn)F的坐標(biāo).
分析:(1)由于A(yíng)B為4,CB∥OA,則C點(diǎn)縱坐標(biāo)為4,作CG⊥AO與x軸交于點(diǎn)G,結(jié)合OA=AB=4,OA=2CB即可得出C點(diǎn)坐標(biāo).
(2)根據(jù)△CMB∽△AMO,得出
BM
OM
=
BC
AO
=1:2;求出△BCM的面積為△OCM面積的一半,又根據(jù)△CBO面積為△BOA面積的一半,只要求出梯形OABC的面積即可求出△OCM的面積.
(3)先求出二次函數(shù)解析式,再根據(jù)平行四邊形的性質(zhì)求出F點(diǎn)橫坐標(biāo),將橫坐標(biāo)代入解析式即可求出F點(diǎn)的縱坐標(biāo),注意,符合條件的F點(diǎn)不止一個(gè).
解答:精英家教網(wǎng)解:(1)如圖,作CG⊥AO與x軸交于點(diǎn)G,則CB=AG,
∵OA=2CB,
∴OA=2AG,
∵AO=4,
∴OG=2,
由于A(yíng)B為4,CB∥OA,則C點(diǎn)縱坐標(biāo)為4,
∴C(2,4).

(2)∵AO=2CB,
∴2S△CBO=S△AOB,
∵S梯形ABCO=
1
2
(CB+AO)•AB=
1
2
×(2+4)×4=12,
∴S△CBO=12×
1
3
=4,
∵CB∥AO,
∴△CMB∽△AMO,
CB
AO
=
BM
OM
,
CB
AO
=
1
2
,
BM
OM
=
1
2
,
∴S△COM=
2
3
S△COB=
2
3
×4=
8
3
;

(3)∵O(0,0),A(4,0),C(2,4),精英家教網(wǎng)
∴設(shè)解析式為y=a(x-0)(x-4),
將(2,4)代入解析式得,4=a(2-0)(2-4),
解得a=-1.
則解析式為y=-(x-0)(x-4)=-x2+4x.
由圖可知F點(diǎn)橫坐標(biāo)為2+4=6,
將x=6代入y=-(x-0)(x-4)=-x2+4x得,
y=-36+4×6=-12,
故F(6,-12).
由圖可知F1點(diǎn)橫坐標(biāo)為2-4=-2,
將x=-2代入y=-(x-0)(x-4)=-x2+4x得,
y=-36+4×6=-12,
故F1(-2,-12).
當(dāng)F與C重合時(shí),F(xiàn)2(2,4).
故F點(diǎn)的坐標(biāo)為:(6,-12),F(xiàn)1(-2,-12),F(xiàn)2(2,4).
點(diǎn)評(píng):此題考查了二次函數(shù)的性質(zhì)和梯形及平行四邊形的性質(zhì),將坐標(biāo)與圖形相結(jié)合,使得這道題充分體現(xiàn)了數(shù)形結(jié)合的重要性,同時(shí)要注意分類(lèi)討論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角梯形OABC中,OA∥CB,A、B兩點(diǎn)的坐標(biāo)分別為A(15,0),B(10,12),動(dòng)點(diǎn)P、Q分別從O、B兩點(diǎn)出發(fā),點(diǎn)P以每秒2個(gè)單位的速度沿OA向終點(diǎn)A運(yùn)動(dòng),點(diǎn)Q以每秒1個(gè)單位的速度沿BC向C運(yùn)動(dòng),當(dāng)點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也同時(shí)停止運(yùn)動(dòng).線(xiàn)段OB、PQ相交于點(diǎn)D,過(guò)點(diǎn)D作DE∥OA,交AB于點(diǎn)E,射線(xiàn)QE交x軸于點(diǎn)F.設(shè)動(dòng)點(diǎn)PQ運(yùn)精英家教網(wǎng)動(dòng)時(shí)間為t(單位:秒).
(1)當(dāng)t為何值時(shí),四邊形PABQ是等腰梯形,請(qǐng)寫(xiě)出推理過(guò)程;
(2)當(dāng)t=2秒時(shí),求梯形OFBC的面積;
(3)當(dāng)t為何值時(shí),△PQF是等腰三角形?請(qǐng)寫(xiě)出推理過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角梯形COAB中,CB∥OA,以O(shè)為原點(diǎn)建立直角坐標(biāo)系,A、C的坐標(biāo)分別為A精英家教網(wǎng)(10,0)、C(0,8),CB=4,D為OA中點(diǎn),動(dòng)點(diǎn)P自A點(diǎn)出發(fā)沿A→B→C→O的線(xiàn)路移動(dòng),速度為1個(gè)單位/秒,移動(dòng)時(shí)間為t秒.
(1)求AB的長(zhǎng),并求當(dāng)PD將梯形COAB的周長(zhǎng)平分時(shí)t的值,并指出此時(shí)點(diǎn)P在哪條邊上;
(2)動(dòng)點(diǎn)P在從A到B的移動(dòng)過(guò)程中,設(shè)△APD的面積為S,試寫(xiě)出S與t的函數(shù)關(guān)系式,并指出t的取值范圍;
(3)幾秒后線(xiàn)段PD將梯形COAB的面積分成1:3的兩部分?求出此時(shí)點(diǎn)P的坐標(biāo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角梯形OABC中,OA、OC邊所在直線(xiàn)與x、y軸重合,BC∥OA,點(diǎn)B的坐標(biāo)為(6.4,4.8),對(duì)角線(xiàn)OB⊥OA.在線(xiàn)段OA、AB上有動(dòng)點(diǎn)E、D,點(diǎn)E以每秒2厘米的速度在線(xiàn)段OA上從點(diǎn)O向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)D以每秒1厘米的速度在線(xiàn)段AB上從點(diǎn)A向點(diǎn)B勻速運(yùn)動(dòng).當(dāng)點(diǎn)E到達(dá)點(diǎn)A時(shí),點(diǎn)D同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)E的運(yùn)動(dòng)時(shí)間為t(秒),
(1)求線(xiàn)段AB所在直線(xiàn)的解析式;
(2)設(shè)四邊形OEDB的面積為y,求y關(guān)于t的函數(shù)關(guān)系式,并寫(xiě)出自變量的t的取值范圍;
(3)在運(yùn)動(dòng)過(guò)程中,存不存在某個(gè)時(shí)刻,使得以A、E、D為頂點(diǎn)的三角形與△ABO相似,若存在求出這個(gè)時(shí)刻t,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•湛江模擬)已知,如圖,在直角梯形COAB中,CB∥OA,以O(shè)為原點(diǎn)建立平面直角坐標(biāo)系,A、B、C的坐標(biāo)分別為A(10,0)、B(4,8)、C(0,8),D為OA的中點(diǎn),動(dòng)點(diǎn)P自A點(diǎn)出發(fā)沿A→B→C→O的路線(xiàn)移動(dòng),速度為每秒1個(gè)單位,移動(dòng)時(shí)間記為t秒.
(1)求過(guò)點(diǎn)O、B、A三點(diǎn)的拋物線(xiàn)的解析式;
(2)求AB的長(zhǎng);若動(dòng)點(diǎn)P在從A到B的移動(dòng)過(guò)程中,設(shè)△APD的面積為S,寫(xiě)出S與t的函數(shù)關(guān)系式,并指出自變量t的取值范圍;
(3)動(dòng)點(diǎn)P從A出發(fā),幾秒鐘后線(xiàn)段PD將梯形COAB的面積分成1:3兩部分?求出此時(shí)P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角梯形OABC中,AB∥OC,BC⊥x軸于點(diǎn)C,A(1,2),C(3,0).動(dòng)點(diǎn)P從O點(diǎn)出發(fā),沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度移動(dòng).過(guò)P點(diǎn)作PQ⊥直線(xiàn)OA,垂足為Q.設(shè)P點(diǎn)移動(dòng)的時(shí)間為t秒(0<t≤7),△OPQ與直角梯形OABC重疊部分的面積為S.
(1)寫(xiě)出點(diǎn)B的坐標(biāo):
(3,2)
(3,2)
;
(2)當(dāng)t=7時(shí),求直線(xiàn)PQ的解析式,并判斷點(diǎn)B是否在直線(xiàn)PQ上;
(3)求S關(guān)于t的函數(shù)關(guān)系式;
(4)連接AC.是否存在t,使得PQ分△ABC的面積為1:3?若存在,直接寫(xiě)出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案