【題目】計(jì)算:
(1)(-5.5)+(-3.2)-(-2.5)-4.8
(2)-40-28-(-19)+(-24)
(3)
(4)
【答案】(1)-11;(2)-73;(3)-31;(4);
【解析】
(1)根據(jù)加法交換律計(jì)算即可;(2)根據(jù)有理數(shù)加減法運(yùn)算法則計(jì)算即可;(3)根據(jù)有理數(shù)除法法則及乘法分配律計(jì)算即可;(4)根據(jù)有理數(shù)混合運(yùn)算法則按照計(jì)算順序計(jì)算即可.
(1)原式=-5.5-3.2+2.5-4.8,
=-(3.2+4.8)-(5.5-2.5),
=-8-3,
=-11.
(2)原式=-40-28+19-24,
=-73.
(3)原式=
= (-60)- - (-60),
=-40+5+4,
=-31.
(4)原式=-1- (-7),
=-1+
=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知兩個(gè)分別含有30°,45°角的一副直角三角板.
(1)如圖1疊放在一起
若OC恰好平分∠AOB,則∠AOD= 度;
若∠AOC=40°,則∠BOD= 度;
(2)如圖2疊放在一起,∠AOD=4∠BOC,試計(jì)算∠AOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A、B兩個(gè)村莊的坐標(biāo)分別是(2,1)和(6,3),一輛汽車從原點(diǎn)O出發(fā),沿x軸向右行駛.
(1)當(dāng)汽車行駛到點(diǎn)M(___________)時(shí)離A村最近;
(2)當(dāng)汽車行駛到點(diǎn)N(____________)時(shí)離B村最近;
(3)當(dāng)汽車行駛到點(diǎn)P(___________)時(shí)離A、B兩村一樣近.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y= x2﹣ x﹣ 與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,對(duì)稱軸與x軸交于點(diǎn)D,點(diǎn)E(4,n)在拋物線上.
(1)求直線AE的解析式;
(2)點(diǎn)P為直線CE下方拋物線上的一點(diǎn),連接PC,PE.當(dāng)△PCE的面積最大時(shí),連接CD,CB,點(diǎn)K是線段CB的中點(diǎn),點(diǎn)M是CP上的一點(diǎn),點(diǎn)N是CD上的一點(diǎn),求KM+MN+NK的最小值;
(3)點(diǎn)G是線段CE的中點(diǎn),將拋物線y= x2﹣ x﹣ 沿x軸正方向平移得到新拋物線y′,y′經(jīng)過點(diǎn)D,y′的頂點(diǎn)為點(diǎn)F.在新拋物線y′的對(duì)稱軸上,是否存在一點(diǎn)Q,使得△FGQ為等腰三角形?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算(直接寫出結(jié)果):
(1)﹣2+5
(2)﹣17+(﹣3)
(3)(﹣10)﹣(-6)
(4)(﹣1)×(﹣12)
(5)﹣2×(﹣3)2
(6)﹣1÷(﹣5)
(7)﹣1200+(﹣1)200
(8)﹣0.125×(﹣2)3
(9)|﹣|
(10)(-)3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=kx+b(k≠0)的圖象經(jīng)過點(diǎn)A(2,﹣6),且與反比例函數(shù)y=﹣ 的圖象交于點(diǎn)B(a,4)
(1)求一次函數(shù)的解析式;
(2)將直線AB向上平移10個(gè)單位后得到直線l:y1=k1x+b1(k1≠0),l與反比例函數(shù)y2= 的圖象相交,求使y1<y2成立的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m, CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意鈍角.請(qǐng)問結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩座建筑物的水平距離BC=30m,從A點(diǎn)測(cè)得D點(diǎn)的俯角α為30°,測(cè)得C點(diǎn)的俯角β為60°,求這兩座建筑物的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,每個(gè)小正方形邊長都是1.
(1)按要求作圖:
①△ABC關(guān)于x軸對(duì)稱的圖形△A1B1C1;
②將△A1B1C1向右平移7個(gè)單位得到△A2B2C2.
(2)回答下列問題:
①△A2B2C2中頂點(diǎn)B2坐標(biāo)為 .
②若P(a,b)為△ABC邊上一點(diǎn),則按照(1)中①、②作圖,點(diǎn)P對(duì)應(yīng)的點(diǎn)P2的坐標(biāo)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com