【題目】已知ABC中,a、b、c分別是AB、C的對邊,下列條件不能判斷ABC是直角三角形的是( )

A.AB=C

B.ABC=3:4:5

C.(b+c)(b﹣c)=a2

D.a(chǎn)=7,b=24,c=25

【答案】B

【解析】

試題分析:根據(jù)三角形內(nèi)角和定理可得A、B是否是直角三角形;根據(jù)勾股定理逆定理可判斷出C、D是否是直角三角形.

解:A、∵∠AB=C,且A+B+C=180°,∴∠A=90°,故ABC為直角三角形;

B、∵∠ABC=3:4:5,∴∠C=×180°=75°,故不能判定ABC是直角三角形;

C、(b+c)(b﹣c)=a2b2﹣c2=a2,故ABC為直角三角形;

D、72+242=252,∴△ABC為直角三角形;

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將直線y=﹣2x+3向下平移2個單位得到的直線為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1:y=﹣與直線l2:y=kx﹣交于x軸上的同一個點A,直線l1與y軸交于點B,直線l2與y軸的交點為C.

(1)求k的值,并作出直線l2圖象;

(2)若點P是線段AB上的點且ACP的面積為15,求點P的坐標(biāo);

(3)若點M、N分別是x軸上、線段AC上的動點(點M不與點O重合),是否存在點M、N,使得ANM≌△AOC?若存在,請求出N點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】時鐘顯示為8:30時,時針與分針?biāo)鶌A的角是(

A.90° B.120° C.75° D.84°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABC中,AB=AC,A=36°,兩條角平分線BE、CD相交于點O,則圖中等腰三角形有( )

A.3個 B.5個 C.7個 D.8個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個多邊形切去一個角后,形成的另一個多邊形的內(nèi)角和為1080°,那么原多邊形的邊數(shù)為(

A7 B78 C89 D789

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在對代數(shù)式2x2+axy+6(bx2+3x5y+1)化簡后,沒有含x的項,請求出代數(shù)式(ab)2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點F,G分別在ADE的AD,DE邊上,C,B依次為GF延長線上兩點,AB=AD,BAF=CAE,B=D

(1)求證:BC=DE;

(2)若B=35°,AFB=78°,直接寫出DGB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用網(wǎng)格畫圖:

(1)過點C畫AB的平行線CD;

(2)過點C畫AB的垂線,垂足為E;

(3)線段CE的長度是點C到直線 的距離;

(4)連接CA、CB,在線段CA、CB、CE中,線段 最短,理由:

查看答案和解析>>

同步練習(xí)冊答案