【題目】如圖,正方形ABCD的面積為1,則以相鄰兩邊中點連線EF為邊正方形EFGH的周長為( )

A.
B.2
C.
+1
D.2 +1

【答案】B
【解析】解:∵正方形ABCD的面積為1,
∴BC=CD= =1,∠BCD=90°,
∵E、F分別是BC、CD的中點,
∴CE= BC= ,CF= CD=
∴CE=CF,
∴△CEF是等腰直角三角形,
∴EF= CE= ,
∴正方形EFGH的周長=4EF=4× =2
故選:B.
【考點精析】解答此題的關鍵在于理解正方形的性質(zhì)的相關知識,掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知坐標系中點A(2,-1),B(7,-1),C(3,-3).

(1)判定ABC的形狀;

(2)設ABC關于x軸的對稱圖形是A1B1C1,若把A1B1C1的各頂點的橫坐標都加2.縱坐標不變,則A1B1C1的位置發(fā)生什么變化?若最終位置是A2B2C2,求C2點的坐標;

(3)試問在x軸上是否存在一點P,使PC-PB最大,若存在,求出PC-PB的最大值及P點坐標;若不存在,說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點A在反比例函數(shù)y= 的圖象上.若點B在反比例函數(shù)y= 的圖象上,則k的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知方程組 的解x為非正數(shù),y為負數(shù).
(1)求a的取值范圍;
(2)在a的取值范圍中,當a為何整數(shù)時,不等式2ax+x>2a+1的解為x<1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點D,E為BC邊的中點,連接DE.
(1)求證:DE與⊙O相切.
(2)若tanC= ,DE=2,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1)ABC中,H是高ADBE的交點,且AD=BD.

(1)請你猜想BHAC的關系,并說明理由;

(2)若將圖(1)中的∠A改成鈍角,請你在圖(2)中畫出該題的圖形,此時(1)中的結論還成立嗎?(不必證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一張長方形ABCD紙張中,一邊BC折疊后落在對角線BD上,點E為折痕與邊CD的交點,若AB=5,BC=12,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】生活中很多礦泉水沒有喝完便被扔掉,造成極大的浪費,為此數(shù)學興趣小組的同學對某單位的某次會議所用礦泉水的浪費情況進行調(diào)查,為期半天的會議中,每人發(fā)一瓶500ml的礦泉水,會后對所發(fā)礦泉水喝的情況進行統(tǒng)計,大至可分為四種:A全部喝完;B喝剩約;C喝剩約一半;D開瓶但基本未喝.同學們根據(jù)統(tǒng)計結果繪制如下兩個統(tǒng)計圖,根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

1)參加這次會議的有多少人?在圖(2)中D所在扇形的圓心角是多少度?并補全條形統(tǒng)計圖;(計算結果請保留整數(shù)).

2)若開瓶但基本未喝算全部浪費,試計算這次會議平均每人浪費的礦泉水約多少毫升?

3)據(jù)不完全統(tǒng)計,該單位每年約有此類會議60次,每次會議人數(shù)約在4060人之間,請用(2)中計算的結果,估計該單位一年中因此類會議浪費的礦泉水(500ml/瓶)約有多少?(可使用科學計算器)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在學習了圖形的旋轉(zhuǎn)知識后,數(shù)學興趣小組的同學們又進一步對圖形旋轉(zhuǎn)前后的線段之間、角之間的關系進行了探究.

(一)嘗試探究
如圖1,在四邊形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,點E、F分別在線段BC、CD上,∠EAF=30°,連接EF.
(1)如圖2,將△ABE繞點A逆時針旋轉(zhuǎn)60°后得到△A′B′E′(A′B′與AD重合),請直接寫出∠E′AF=度,線段BE、EF、FD之間的數(shù)量關系為
(2)如圖3,當點E、F分別在線段BC、CD的延長線上時,其他條件不變,請?zhí)骄烤段BE、EF、FD之間的數(shù)量關系,并說明理由.

查看答案和解析>>

同步練習冊答案