【題目】如圖,在平面直角坐標(biāo)系中,點B坐標(biāo)為(-3,0),點A是y軸正半軸上一點,且AB=5,點P是x軸上位于點B右側(cè)的一個動點,設(shè)點P的坐標(biāo)為(m,0)
(1)點A的坐標(biāo)為( )
(2)當(dāng)△ABP是等腰三角形時,求P點的坐標(biāo);
(3)如圖2,過點P作PE⊥AB交線段AB于點E,連接OE.若點A關(guān)于直線OE的對稱點為A',當(dāng)點A'恰好落在直線PE上時,BE=________(直接寫出答案)
【答案】(1)0,4;(2)P點的坐標(biāo)為(3,0)、 (2,0)或;(3)
【解析】
(1)在直角△AOB中,利用勾股定理求出OA,則A點坐標(biāo)可知;
(2) 當(dāng)△ABP為等腰三角形時,可分三種情況討論,①若AB=AP時,利用勾股定理求出OP,則P點坐標(biāo)可知;②若BA=BP,P點坐標(biāo)易求;③若PA=PB時,設(shè)P(x,0),運用兩點間距離公式列式可求P點坐標(biāo).
(3)過O點作OG⊥AB,由角平分線性質(zhì)定理,結(jié)合PE⊥AB,求得∠GEO=45°,再利用直角三角形的面積公式求得OG的長,則GE的長可知,利用勾股定理又可求出BG,于是BE的長可知.
(1)根據(jù)題意得:
在直角△AOB中,OA=
∴A點的坐標(biāo)為(0,4)
故答案為:0,4
(2)當(dāng)△ABP為等腰三角形時,分三種情況討論
①若AB=AP=5,OP= , ∴P(3,0);
②若BA=BP=5,OP=BP-OB=5-3=2,∴P(2,0);
③若PA=PB時,設(shè)P(x,0), 則,
∴6x=7,
解得x= ,
∴P(,0)
故P點的坐標(biāo)為:(3,0)、 (2,0)或(,0)
(3)如圖,過O點作OG⊥AB,
∵E在AA'的垂直平分線上,
∴∠AEK=∠A'EK,
∴∠GEO=∠OEH,
∵∠AEA'=∠BEP=90°,
∴∠GEO=45°,
∴OG=GE,
∵S△AOB=OG×AB=OA×OB,
∴OG= ,
∴GE=OG= ,
∵BG=,
∴BE=BG+GE=+=.
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,王老師布置如下任務(wù):
如圖1,直線MN外一點A,過點A作直線MN的平行線.
(1)小路的作法如下:
① 在MN上任取一點B,作射線BA;
② 以B為圓心任意長為半徑畫弧,分別交BA和MN于C、D兩點(點D位于BA的左側(cè)),再以A為圓心,相同的長度為半徑畫弧EH,交BA于點E(點E位于點A上方);
③以E為圓心CD的長為半徑畫弧,交弧EH于點F(F點位于BA左側(cè))
④作直線AF
⑤直線AF即為所求作平行線.
請你根據(jù)小路同學(xué)的作圖方法,利用直尺和圓規(guī)完成作圖(保留作圖痕跡);并完成以下推理,注明其中蘊含的數(shù)學(xué)依據(jù):
(2)請你參考小路的作法,利用圖2再設(shè)計一種“過點A作MN的平行線”的尺規(guī)作圖過程(保留作圖痕跡),并說明其中蘊含的數(shù)學(xué)依據(jù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABD,△ACE都是等邊三角形,BE,DC相交于點F,連接AF.
(1)求證:BE=DC;
(2)求證:AF平分∠DFE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了節(jié)約水資源,某市準(zhǔn)備按照居民家庭年用水量實行階梯水價,水價分檔遞增,計劃使第一檔、第二檔和第三檔的水價分別覆蓋全市居民家庭的80%,15%和5%.為合理確定各檔之間的界限,隨機抽查了該市5萬戶居民家庭上一年的年用水量(單位:m3),繪制了統(tǒng)計圖,如圖所示.下面有四個推斷:
①年用水量不超過180m3的該市居民家庭按第一檔水價交費;
②年用水量不超過240m3的該市居民家庭按第三檔水價交費;
③該市居民家庭年用水量的中位數(shù)在150~180m3之間;
④該市居民家庭年用水量的眾數(shù)約為110m3.
其中合理的是( )
A. ①③ B. ①④ C. ②③ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=45°,CD⊥AB于點D,BE⊥AC于點E,BE與CD交于點F。
(1)求證:△ACD≌△FBD。
(2)若AB=5,AD=1,求BF的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在足夠大的空地上有一段長為a米的舊墻MN,某人利用舊墻和木欄圍成一個矩形菜園ABCD,其中AD≤MN,已知矩形菜園的一邊靠墻,另三邊一共用了100米木欄.
(1)若a=20,所圍成的矩形菜園的面積為450平方米,求所利用舊墻AD的長;
(2)求矩形菜園ABCD面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形、矩形與正方形的形狀有差異,我們將菱形、矩形與正方形的接近程度稱為“接近度”.在研究“接近度”時,應(yīng)保證相似圖形的“接近度”相等.
(1)設(shè)菱形相鄰兩個內(nèi)角的度數(shù)分別為和,將菱形的“接近度”定義為,于是,越小,菱形越接近于正方形.
①若菱形的一個內(nèi)角為,則該菱形的“接近度”等于 ;
②當(dāng)菱形的“接近度”等于 時,菱形是正方形.
(2)設(shè)矩形相鄰兩條邊長分別是和(),將矩形的“接近度”定義為,于是越小,矩形越接近于正方形.
你認(rèn)為這種說法是否合理?若不合理,給出矩形的“接近度”一個合理定義.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com