【題目】在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c的頂點(diǎn)M的坐標(biāo)為(﹣1,﹣4),且與x軸交于點(diǎn)A,點(diǎn)B(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C.
(1)填空:b= , c= , 直線AC的解析式為
(2)直線x=t與x軸相交于點(diǎn)H.
①當(dāng)t=﹣3時(shí)得到直線AN(如圖1),點(diǎn)D為直線AC下方拋物線上一點(diǎn),若∠COD=∠MAN,求出此時(shí)點(diǎn)D的坐標(biāo);
②當(dāng)﹣3<t<﹣1時(shí)(如圖2),直線x=t與線段AC,AM和拋物線分別相交于點(diǎn)E,F(xiàn),P.試證明線段HE,EF,F(xiàn)P總能組成等腰三角形;如果此等腰三角形底角的余弦值為 ,求此時(shí)t的值.

【答案】
(1)2;﹣3;y=﹣x﹣3
(2)

解:①設(shè)點(diǎn)D的坐標(biāo)為(m,m2+2m﹣3),

∵∠COD=∠MAN,

∴tan∠COD=tan∠MAN,

= ,

解得:m=± ,

∵﹣3<m<0,

∴m=﹣ ,

故點(diǎn)D的坐標(biāo)為(﹣ ,﹣2 );

②設(shè)直線AM的解析式為y=mx+n,

將點(diǎn)A(﹣3,0)、M(﹣1,﹣4)代入,

得: ,解得:

∴直線AM的解析式為:y=﹣2x﹣6,

∵當(dāng)x=t時(shí),HE=﹣(﹣t﹣3)=t+3,HF=﹣(﹣2t﹣6)=2t+6,HP=﹣(t2+2t﹣3),

∴HE=EF=HF﹣HE=t+3,F(xiàn)P=﹣t2﹣4t﹣3,

∵HE+EF﹣FP=2(t+3)+t2+4t+3=(t+3)2>0,

∴HE+EF>FP,

又HE+FP>EF,EF+FP>HE,

∴當(dāng)﹣3<t<﹣1時(shí),線段HE,EF,F(xiàn)P總能組成等腰三角形;

由題意得: = ,即 = ,

整理得:5t2+26t+33=0,

解得:t1=﹣3,t2=﹣

∵﹣3<t<﹣1,

∴t=﹣


【解析】解:(1)∵拋物線y=x2+bx+c的頂點(diǎn)M的坐標(biāo)為(﹣1,﹣4),
,解得: ,
∴拋物線解析式為:y=x2+2x﹣3,
令y=0,得:x2+2x﹣3=0,解得:x1=1,x2=﹣3,
∴A(﹣3,0),B(1,0),
令x=0,得y=﹣3,
∴C(0,﹣3),
設(shè)直線AC的解析式為:y=kx+b,
將A(﹣3,0),C(0,﹣3)代入,
得: ,解得: ,
∴直線AC的解析式為:y=﹣x﹣3;
所以答案是:2,﹣3,y=﹣x﹣3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a、b、c為常數(shù),a≠0)經(jīng)過點(diǎn)A(﹣1,0),B(5,﹣6),C(6,0).

(1)求拋物線的解析式;
(2)如圖,在直線AB下方的拋物線上是否存在點(diǎn)P使四邊形PACB的面積最大?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)若點(diǎn)Q為拋物線的對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),試指出△QAB為等腰三角形的點(diǎn)Q一共有幾個(gè)?并請(qǐng)求出其中某一個(gè)點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】填空并解答:

規(guī)定:a2a×aa3a×a×a,ana×a×…×an 個(gè) a

(1)(2×3)2 ,22×32 ,你發(fā)現(xiàn)(2× 3)2 的值與 22×32 的值

(2)(2×3)3 ,23×33 ,你發(fā)現(xiàn)(2×3)3 的值與 23×33 的值

由此,我們可以猜想:(a×b2 a2×b2,(a×b3 a3×b3,…(a×bn an×bn.

(3)利用(2)題結(jié)論計(jì)算(﹣2)2018×(﹣2019 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有下列說法:形狀相同的圖形是全等形;全等形的大小相同,形狀也相同;全等三角形的面積相等;面積相等的兩個(gè)三角形全等;,,則其中正確的說法有  

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的數(shù)陣是由50個(gè)偶數(shù)排成的.

(1)圖中框內(nèi)的4個(gè)數(shù)有什么關(guān)系?

(2)在數(shù)陣圖中任意作一類似于(1)中的框,設(shè)其中的一個(gè)數(shù)為,那么其他三個(gè)數(shù)怎樣表示?

(3)如果四個(gè)數(shù)的和是172,能否求出這4個(gè)數(shù)?

(4)如果四個(gè)數(shù)的和是322,能否求出這4個(gè)數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖線段 AB=24,動(dòng)點(diǎn) P A 出發(fā),以每秒 2 個(gè)單位的速度沿射線 AB運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為 t (t>0),M AP 的中點(diǎn).

(1)當(dāng)點(diǎn) P 在線段 AB 上運(yùn)動(dòng)時(shí)

①當(dāng) t 為多少時(shí),PB=2AM?②2BM-BP的值.

(2)當(dāng) P AB 延長線上運(yùn)動(dòng)時(shí),N BP 的中點(diǎn),說明線段 MN 的長度不變,并 求出其值.

(3) P 點(diǎn)的運(yùn)動(dòng)過程中是否存在這樣的 t 的值,使 M、N、B 三點(diǎn)中的一個(gè)點(diǎn) 是以其余兩點(diǎn)為端點(diǎn)的線段的中點(diǎn),若有請(qǐng)求出 t 的值;若沒有請(qǐng)說明理 由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:

有一些相同的房間需要粉刷,一天 3名一級(jí)技工去粉刷 8個(gè)房間,結(jié)果其中有 50墻面未來得及刷;同樣時(shí)間內(nèi) 5名二級(jí)技工粉刷了 10個(gè)房間之外,還多刷了另外的40 墻面.已知每名同級(jí)別的技工每天的工作效率相同,每名一級(jí)技工比二級(jí)技工每天多刷 10墻面,求每個(gè)一級(jí)技工和二級(jí)技工每天粉刷的墻面各是多少平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】襄陽市某企業(yè)積極響應(yīng)政府“創(chuàng)新發(fā)展”的號(hào)召,研發(fā)了一種新產(chǎn)品.已知研發(fā)、生產(chǎn)這種產(chǎn)品的成本為30元/件,且年銷售量y(萬件)關(guān)于售價(jià)x(元/件)的函數(shù)解析式為:y=
(1)若企業(yè)銷售該產(chǎn)品獲得的年利潤為W(萬元),請(qǐng)直接寫出年利潤W(萬元)關(guān)于售價(jià)x(元/件)的函數(shù)解析式;
(2)當(dāng)該產(chǎn)品的售價(jià)x(元/件)為多少時(shí),企業(yè)銷售該產(chǎn)品獲得的年利潤最大?最大年利潤是多少?
(3)若企業(yè)銷售該產(chǎn)品的年利潤不少于750萬元,試確定該產(chǎn)品的售價(jià)x(元/件)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)計(jì)劃把甲種貨物1240噸和乙種貨物880噸用一列貨車運(yùn)往某地,已知這列貨車掛有A、B兩種不同規(guī)格的貨車車廂共40節(jié),使用A型車廂每節(jié)費(fèi)用為6000元,使用B型車廂每節(jié)費(fèi)用為8000元。

1)設(shè)運(yùn)送這批貨物的總費(fèi)用為萬元,這列貨車掛A型車廂節(jié),試寫出之間的函數(shù)關(guān)系式;

2)如果每節(jié)A型車廂最多可裝甲種貨物35噸和乙種貨物15噸,每節(jié)B型車廂最多可裝甲種貨物25噸和乙種貨物35噸,裝貨時(shí)按此要求安排A、B兩種車廂的節(jié)數(shù),那么共有哪幾種安排車廂的方案?

3)在上述方案中,哪種方案運(yùn)費(fèi)最省,最少運(yùn)費(fèi)為多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案