【題目】1876年,美國(guó)總統(tǒng)Garfield用如圖所示的兩個(gè)全等的直角三角形證明了勾股定理,若圖中,,則下面結(jié)論錯(cuò)誤的是( )

A. B. C. D. 是等腰直角三角形

【答案】C

【解析】

由全等三角形的性質(zhì)可得AB=EC=a,BE=CD=b,AE=DE,∠AEB=∠EDC,可求∠AED=90°,且AE=DE,即AE=DE=4,即可判斷各個(gè)選項(xiàng).

解:∵△ABE≌△ECD
∴AB=EC=a,BE=CD=b,AE=DE,∠AEB=∠EDC,
∵∠EDC+∠DEC=90°
∴∠AEB+∠DEC=90°
∴∠AED=90°,且AE=DE,
∴△ADE是等腰直角三角形,AE2+DE2=AD2=32,
∴AE=4=DE,
∴AB2+BE2=AE2,
∴a2+b2=16,
故A、B、D選項(xiàng)正確
∵S△ADE=AE×DE=8
故C選項(xiàng)錯(cuò)誤
故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)(﹣1,0),與x軸的另一個(gè)交點(diǎn)在點(diǎn)(1,0)和(2,0)之間,對(duì)稱軸l如圖所示,則下列結(jié)論:①abc>0;a﹣b+c=0;a+c>0;2a+c<0,其中正確的結(jié)論個(gè)數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB⊙O的直徑,AC是弦,直線EF經(jīng)過(guò)點(diǎn)C,AD⊥EF于點(diǎn)D,∠DAC=∠BAC

1)求證:EF⊙O的切線;

2)若⊙O的半徑為2,∠ACD=30°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)C在線段AB上,AC=2BC,點(diǎn)D、E在直線AB上,點(diǎn)D在點(diǎn)E的左側(cè)

(1)AB=18DE=8,線段DE在線段AB上移動(dòng)

①如圖1,當(dāng)EBC中點(diǎn)時(shí),求AD的長(zhǎng);

②點(diǎn)F(異于A,BC點(diǎn))在線段AB上,AF=3ADCE+EF=3,求AD的長(zhǎng);

(2)AB=2DE,線段DE在直線AB上移動(dòng),且滿足關(guān)系式,則______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,AB是直徑,⊙O的切線PC交BA的延長(zhǎng)線于點(diǎn)P,OF∥BC,交AC于點(diǎn)E,交PC于點(diǎn)F,連接AF.

(1)求證:AF是⊙O的切線;

(2)已知⊙O的半徑為4,AF=3,求線段AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在的正方形網(wǎng)格中,是格點(diǎn)三角形,點(diǎn)的坐標(biāo)分別為,.

(1)在圖中畫(huà)出相應(yīng)的平面直角坐標(biāo)系;

(2)畫(huà)出關(guān)于直線對(duì)稱的,并標(biāo)出點(diǎn)的坐標(biāo);

(3)若點(diǎn)內(nèi),其關(guān)于直線的對(duì)稱點(diǎn)是,則的坐標(biāo)是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線yk1x+1與雙曲線y相交于P(1,m),Q(-2,-1)兩點(diǎn).

(1)求m的值;

(2)若A1(x1,y1),A2(x2,y2),A3(x3y3)為雙曲線上三點(diǎn),且x1<x2<0<x3,請(qǐng)直接說(shuō)明y1,y2y3的大小關(guān)系;

(3)觀察圖象,請(qǐng)直接寫(xiě)出不等式k1x+1>的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠E=F,∠B=C,AE=AF,結(jié)論:①EM=FN;②CD=DN;③∠FAN=EAM;④△ACN≌△ABM.其中正確的有( 。

A. 1個(gè)B. 2個(gè)

C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】大于1的正整數(shù)m的三次冪可“分裂”成若干個(gè)連續(xù)奇數(shù)的和.如23=3+5,33=7+9+11,43=13+15+17+19,…,若m3“分裂”后,其中有一個(gè)奇數(shù)是347,則m的值是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案