【題目】如圖,把ABC放置在每個小正方形邊長為1的網(wǎng)格中,點A,B,C均在格點上,建立適當?shù)钠矫嬷苯亲鴺讼?/span>xOy,ABCABC關于y軸對稱.

1)畫出該平面直角坐標系與ABC

2)在y軸上找點P,使PC+PB的值最小,求點P的坐標與PC+PB'的最小值

【答案】1)見解析;(2)點P的坐標為(0,﹣1),PC+PB'的最小值為2

【解析】

1)根據(jù)網(wǎng)格即可畫出平面直角坐標系和三角形;

2)根據(jù)題意有BCy軸的交點即為點P,再利用勾股定理求出最小值BC即可.

解:如圖所示:

1)建立平面直角坐標系,

ABC即為所求作的圖形;

2BCy軸的交點即為點PP0,﹣1

此時PC+PBPC′+PBBC最小,

BC

答:點P的坐標為(0,﹣1),PC+PB'的最小值為2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠MAN是一個鋼架結(jié)構,在角內(nèi)部最多只能構造五根等長鋼條,則∠ABC的度數(shù)最大為_______度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點A(2,0),B(0,4),作BOC,使BOCABO全等,則點C坐標為________________________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直徑,于點,,,則陰影部分的面積為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,為原點,點坐標為,點坐標為,以為直徑的圓軸的負半軸交于點

(1)求圖象經(jīng)過,,三點的拋物線的解析式;

(2)點為所求拋物線的頂點,試判斷直線的關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】保險公司車保險種的基本保費為a(單位:元),繼續(xù)購買該險種的投保人稱為續(xù)保人,續(xù)保人本年度的保費與其上年度出險次數(shù)的關聯(lián)如下表:

上年度出險次數(shù)

0

1

2

3

4

≥5

保費

0.85a

a

1.25a

1.5a

1.75a

2a

該公司隨機調(diào)查了該險種的300名續(xù)保人在一年內(nèi)的出險情況,得到如下統(tǒng)計圖:

(1)樣本中,保費高于基本保費的人數(shù)為__________名;

(2)已知該險種的基本保費a為6 000元,估計1名續(xù)保人本年度的平均保費.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,∠ACB90°,BC30cmAC40cm,點D在線段AB上從點B出發(fā),以2cm/s的速度向終點A運動,設點D的運動時間為ts).

1)用含t的代數(shù)式表示BD的長;

2)求AB的長;

3)求AB邊上的高;

4)當BCD為等腰三角形時,求t的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】班級組織同學乘大巴車前往“研學旅行”基地開展愛國教育活動,基地離學校有90公里,隊伍8:00從學校出發(fā).蘇老師因有事情,8:30從學校自駕小車以大巴1.5倍的速度追趕,追上大巴后繼續(xù)前行,結(jié)果比隊伍提前15分鐘到達基地.問:

(1)大巴與小車的平均速度各是多少?

(2)蘇老師追上大巴的地點到基地的路程有多遠?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】據(jù)調(diào)查,超速行駛是引發(fā)交通事故的主要原因之一.小強用所學知識對一條筆直公路上的車輛進行測速,如圖所示,觀測點C到公路的距離CD=200m,檢測路段的起點A位于點C的南偏東60°方向上,終點B位于點C的南偏東45°方向上.一輛轎車由東向西勻速行駛,測得此車由A處行駛到B處的時間為10s.問此車是否超過了該路段16m/s的限制速度?(觀測點C離地面的距離忽略不計,參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

同步練習冊答案