【題目】如圖,四邊形中,連接、,點(diǎn)上一點(diǎn),連接,為等邊三角形,,,,則_________

【答案】

【解析】

延長DAF,使CDEF=4:5,連接BF,過點(diǎn)FFGDB,交DB的延長線于G,過點(diǎn)BBHADH,即可證出△BCD∽△BEF,然后列出比例式求出BF,再利用銳角三角函數(shù)求出FG、BGDG,再證出△BDH∽△FDG,求出BH、HDAH,再利用勾股定理即可求出結(jié)論.

解:延長DAF,使CDEF=4:5,連接BF,過點(diǎn)FFGDB,交DB的延長線于G,過點(diǎn)BBHADH,

,

CDEF=,∠BED+∠BCD=180°

∴△BCD∽△BEF,∠EBC+∠EDC=360°-(∠BED+∠BCD=180°

BDBF=CDEF=,∠CBD=EBF

8BF=,∠CBE=DBF

解得BF=10

∵△ACD為等邊三角形

CD=AD,∠EDC=60°

∴∠EBC=120°

∴∠DBF=120°

∴∠FBG=180°-∠DBF=60°

FG=BF·sinFBG=,BG= BF·cosFBG=5

DG=BDBG=13

根據(jù)勾股定理DF==

CD=AD=4AE

EF=5AE

AF=EFAE=4AE=AD

AF=AD=

∵∠BDH=FDG,∠BHD=FGD=90°

∴△BDH∽△FDG

解得:DH=BH=

AH=ADDH=

RtABH中,AB=

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,RtAOB的斜邊OAx軸的正半軸上,∠OBA=90°,且tanAOB=,OB=,反比例函數(shù)的圖象經(jīng)過點(diǎn)B

1)求反比例函數(shù)的表達(dá)式;

2)若AMBAOB關(guān)于直線AB對(duì)稱,一次函數(shù)y=mx+n的圖象過點(diǎn)M、A,求一次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)M是矩形ABCD的邊AD的中點(diǎn),點(diǎn)PBC邊上一動(dòng)點(diǎn),PEMC,PFBM,垂足為E、F

(1)當(dāng)矩形ABCD的長與寬滿足什么條件時(shí),四邊形PEMF為矩形?猜想并證明你的結(jié)論.

(2)(1)中,當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),矩形PEMF變?yōu)檎叫危瑸槭裁矗?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著網(wǎng)購的日益盛行,物流行業(yè)已逐漸成為運(yùn)輸業(yè)的主力,已知某大型物流公司有AB兩種型號(hào)的貨車,A型貨車的滿載量是B型貨車滿載量的2倍多4噸,在兩車滿載的情況下,用A型貨車載1400噸貨物與用B型貨車載560噸貨物的用車數(shù)量相同.

11A型貨車和1B型貨車的滿載量分別是多少?

2)該物流公司現(xiàn)有120噸貨物,可以選擇上述兩種貨車運(yùn)送,在滿載的情況下,有幾種方案可以一次性運(yùn)完?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為配合一帶一路國家倡議,某鐵路貨運(yùn)集裝箱物流園區(qū)正式啟動(dòng)了2期擴(kuò)建工程一項(xiàng)地基基礎(chǔ)加固處理工程由2、8兩個(gè)工程公司承擔(dān)建設(shè),己知2工程公司單獨(dú)建設(shè)完成此項(xiàng)工程需要180工程公司單獨(dú)施工天后,工程公司參與合作,兩工程公司又共同施工天后完成了此項(xiàng)工程.

(1)求工程公司單獨(dú)建設(shè)完成此項(xiàng)工程需要多少天?

(2)由于受工程建設(shè)工期的限制,物流園區(qū)管委會(huì)決定將此項(xiàng)工程劃包成兩部分,要求兩工程公司同時(shí)開工,工程公司建設(shè)其中一部分用了天完成,工程公司建設(shè)另一部分用了天完成,其中均為正整數(shù),且,求兩個(gè)工程公司各施工建設(shè)了多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:內(nèi)接于,過點(diǎn)的切線,交的延長線于點(diǎn),連接

1)如圖1,求證:;

2)如圖2,過點(diǎn)于點(diǎn),連接,交于點(diǎn),,求證:;

3)如圖3,在(2)的條件下,點(diǎn)上一點(diǎn),過點(diǎn)的切線交的延長線于點(diǎn),連接,交的延長線于點(diǎn),連接,點(diǎn)上一點(diǎn),連接,若,,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實(shí)踐是以問題為中心,以活動(dòng)為平臺(tái),以解決某一實(shí)際的數(shù)學(xué)問題為目標(biāo),綜合應(yīng)用知識(shí)和方法解決問題,它是對(duì)數(shù)學(xué)知識(shí)的延伸和發(fā)展,是對(duì)理解、運(yùn)用數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能的升華過程.請(qǐng)同學(xué)們運(yùn)用你所學(xué)的數(shù)學(xué)知識(shí)來研究和解決以下問題吧.

1)探究:已知是平面上一個(gè)運(yùn)動(dòng)的點(diǎn),若,,則當(dāng)點(diǎn)位于 時(shí),線段的長最小,最小值為 ;若,,則當(dāng)點(diǎn)位于 時(shí),線段的長最小,最小值為 ;

2)應(yīng)用:已知是一運(yùn)動(dòng)的點(diǎn),,,如圖①所示,分別以為邊作等腰直角三角形和等腰直角三角形,且,連接

①在圖中找出與相等的線段,并說明理由;

②何時(shí)線段可以取得最小值?請(qǐng)直接寫出線段的最小值;

3)拓展:如圖②,在矩形中,,,為矩形對(duì)角線的交點(diǎn),邊上任意一點(diǎn),連接并延長與邊交于點(diǎn),現(xiàn)將圖中分別沿翻折,使點(diǎn)與點(diǎn)分別落在矩形內(nèi)的點(diǎn)處,連接,則的長有最小值嗎?若有,請(qǐng)直接寫出的長的最小值;若沒有,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù) yax2+bx 的圖象與 x 軸交于點(diǎn) O0,0)和 點(diǎn) B,拋物線的對(duì)稱軸是直線 x3.點(diǎn) A 是拋物線在第一象限上的一個(gè)動(dòng)點(diǎn), 過點(diǎn) A ACx 軸,垂足為 CSAOB3SABC,AC2OCBC

1)求該二次函數(shù)的解析式;

2)拋物線的對(duì)稱軸與 x 軸交于點(diǎn) M.連接 AM,點(diǎn) N 是線段 OA 上的一點(diǎn).當(dāng) AMN=∠AOM 時(shí),求點(diǎn) N 的坐標(biāo);

3)點(diǎn) P 是拋物線上的一個(gè)動(dòng)點(diǎn).點(diǎn) Q y 軸上的一動(dòng)點(diǎn).當(dāng)以 AB,P,Q 四個(gè)點(diǎn)為頂點(diǎn)的四邊形為平行四邊形時(shí),直接寫出點(diǎn) P 坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABC中,ABAC,ADBC邊上的中線,點(diǎn)EAD上一點(diǎn),過點(diǎn)BBFEC,交AD的延長線于點(diǎn)F,連接BE,CF

1)求證:BDF≌△CDE;

2)當(dāng)EDBC滿足什么數(shù)量關(guān)系時(shí),四邊形BECF是正方形?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案