【題目】中,,,垂足為,分別是,邊上一點(diǎn).

(1)求證:;

(2),,求的度數(shù).

【答案】(1)見解析 (2) 90°

【解析】

(1)由已知條件易證Rt△ADC∽Rt△CDB,由此即可得到所求結(jié)論

(2)由已知條件易得結(jié)合(1)中所得可得,這樣結(jié)合∠ACD=∠B可得△CED∽△BFD,由此可得∠CDE=∠BDF,從而可得∠EDF=∠EDC+∠CDF=∠BDF+∠CDF=∠CDB=90°.

(1)CDAB,

∴∠A+ACD=90° ,

又∵∠A+B=90°

∴∠B=ACD ,

RtADCRtCDB

;

(2)CE=AC,BF=BC,

(1)可知:,

又∵∠ACD=B,

∴△CED∽△BFD;

∴∠CDE=BDF;

∴∠EDF=EDC+CDF=BDF+CDF=CDB=90°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:
如圖1,在四邊形ABCD的邊AB上任取一點(diǎn)E(點(diǎn)E不與點(diǎn)A、點(diǎn)B重合),分別連接ED,EC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點(diǎn);如果這三個三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強(qiáng)相似點(diǎn).
解決問題:
(1)如圖1,∠A=∠B=∠DEC=55°,試判斷點(diǎn)E是否是四邊形ABCD的邊AB上的相似點(diǎn),并說明理由;

(2)如圖2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四點(diǎn)均在正方形網(wǎng)格(網(wǎng)格中每個小正方形的邊長為1)的格點(diǎn)(即每個小正方形的頂點(diǎn))上,試在圖2中畫出矩形ABCD的邊AB上的一個強(qiáng)相似點(diǎn)E;
拓展探究:

(3)如圖3,將矩形ABCD沿CM折疊,使點(diǎn)D落在AB邊上的點(diǎn)E處.若點(diǎn)E恰好是四邊形ABCM的邊AB上的一個強(qiáng)相似點(diǎn),試探究AB和BC的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國三國時期數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”,后人稱其為“趙爽弦圖”,如圖1所示.在圖2中,若正方形ABCD的邊長為14,正方形IJKL的邊長為2,且IJ//AB,則正方形EFGH的邊長為.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線的解析表達(dá)式為,且軸交于點(diǎn).直線經(jīng)過點(diǎn),直線交于點(diǎn)

(1)求點(diǎn)的坐標(biāo);

(2)求直線的解析表達(dá)式;

(3)求的面積;

(4)在直線上存在異于點(diǎn)的另一個點(diǎn),使得的面積相等,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上有三個點(diǎn)A、B、C,完成系列問題:

(1)將點(diǎn)B向右移動六個單位長度到點(diǎn)D,在數(shù)軸上表示出點(diǎn)D.

(2)在數(shù)軸上找到點(diǎn)E,使點(diǎn)EA、C兩點(diǎn)的距離相等.并在數(shù)軸上標(biāo)出點(diǎn)E表示的數(shù).

(3)在數(shù)軸上有一點(diǎn)F,滿足點(diǎn)F到點(diǎn)A與點(diǎn)F到點(diǎn)C的距離和是9,則點(diǎn)F表示的數(shù)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4cm,AD=12cmP點(diǎn)在AD邊上以每秒1cm的速度從AD運(yùn)動,點(diǎn)QBC邊上,以每秒4cm的速度從C點(diǎn)出發(fā),在CB間往返運(yùn)動,二點(diǎn)同時出發(fā),待P點(diǎn)到達(dá)D點(diǎn)為止,在這段時間內(nèi),線段PQ有( )次平行于AB

A1 B2 C3 D4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為6的正方形ABCD中,E是邊CD的中點(diǎn),將△ADE沿AE對折至△AFE,延長EF交邊BC于點(diǎn)G,連接AG.

(1)求證:△ABG≌△AFG;(2)求BG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AC為對角線,E為AB上一點(diǎn),過點(diǎn)E作 EF∥AD,與AC、DC 分別交于點(diǎn)G,F(xiàn),H為CG的中點(diǎn),連結(jié)DE、 EH、DH、FH.下列結(jié)論:①EG=DF;②△EHF≌△DHC;③∠AEH+∠ADH=180°;④若,則.其中結(jié)論正確的有( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知A(0,a)B(b,0),C(b,4)三點(diǎn),其中a,b滿足關(guān)系式a2.若在第二象限內(nèi)有一點(diǎn)P(m1),使四邊形ABOP的面積與三角形ABC的面積相等,則點(diǎn)P的坐標(biāo)為(  )

A. (3,1) B. (2,1) C. (41) D. (2.5,1)

查看答案和解析>>

同步練習(xí)冊答案