【題目】“六一”兒童節(jié)前,某玩具商店根據(jù)市場調(diào)查,用2500元購進(jìn)一批兒童玩具,上市后很快脫銷,接著又用4500元購進(jìn)第二批這種玩具,所購數(shù)量是第一批數(shù)量的1.5倍,但每套進(jìn)價多了10元.
(1)求第一批玩具每套的進(jìn)價是多少元?
(2)如果這兩批玩具每套售價相同,且全部售完后總利潤不低于25%,那么每套售價至少是多少元?
【答案】
(1)解:設(shè)第一批玩具每套的進(jìn)價是x元,
×1.5= ,
x=50,
經(jīng)檢驗x=50是分式方程的解,符合題意.
答:第一批玩具每套的進(jìn)價是50元
(2)解:設(shè)每套售價是y元,
×1.5=75(套).
50y+75y﹣2500﹣4500≥(2500+4500)×25%,
y≥70,
答:如果這兩批玩具每套售價相同,且全部售完后總利潤不低于25%,那么每套售價至少是70元
【解析】(1)設(shè)第一批玩具每套的進(jìn)價是x元,則第一批進(jìn)的件數(shù)是: ,第二批進(jìn)的件數(shù)是: ,再根據(jù)等量關(guān)系:第二批進(jìn)的件數(shù)=第一批進(jìn)的件數(shù)×1.5可得方程;(2)設(shè)每套售價是y元,利潤=售價﹣進(jìn)價,根據(jù)這兩批玩具每套售價相同,且全部售完后總利潤不低于25%,可列不等式求解.
【考點精析】關(guān)于本題考查的分式方程的應(yīng)用,需要了解列分式方程解應(yīng)用題的步驟:審題、設(shè)未知數(shù)、找相等關(guān)系列方程、解方程并驗根、寫出答案(要有單位)才能得出正確答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:m,x,y滿足:(1);(2)﹣2a2by+1與7b3a2是同類項.
求代數(shù)式:2x2﹣6y2+m(xy﹣9y2)﹣(3x2﹣3xy+7y2)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,BD是對角線,AE⊥BD于點E,CF⊥BD于點F,試判斷:
(1)△ABE和△CDF全等嗎?請說明理由;
(2)四邊形AECF是不是平行四邊形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知直線的圖象與x軸、y軸交于A,B兩點,直線經(jīng)過原點,與線段AB交于點C,把的面積分為2:1的兩部分,求直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將自然數(shù)按如表規(guī)律排列,表中數(shù)2在第二行第一列,與有序數(shù)對對應(yīng),數(shù)5與對應(yīng),數(shù)14與對應(yīng),根據(jù)這一規(guī)律,數(shù)2014對應(yīng)的有序數(shù)對為__________.
第一列 | 第二列 | 第三列 | 第四列 | 第五列 | ||
第一行 | 1 | 4 | 5 | 16 | 17 | … |
第二行 | 2 | 3 | 6 | 15 | … | |
第三行 | 9 | 8 | 7 | 14 | … | |
第四行 | 10 | 11 | 12 | 13 | … | |
第五行 | … | |||||
…… |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將自然數(shù)按如表規(guī)律排列,表中數(shù)2在第二行第一列,與有序數(shù)對對應(yīng),數(shù)5與對應(yīng),數(shù)14與對應(yīng),根據(jù)這一規(guī)律,數(shù)2014對應(yīng)的有序數(shù)對為__________.
第一列 | 第二列 | 第三列 | 第四列 | 第五列 | ||
第一行 | 1 | 4 | 5 | 16 | 17 | … |
第二行 | 2 | 3 | 6 | 15 | … | |
第三行 | 9 | 8 | 7 | 14 | … | |
第四行 | 10 | 11 | 12 | 13 | … | |
第五行 | … | |||||
…… |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+3(a≠0)經(jīng)過A(3,0),B(4,1)兩點,且與y軸交于點C.
(1)求拋物線y=ax2+bx+3(a≠0)的函數(shù)關(guān)系式及點C的坐標(biāo);
(2)如圖(1),連接AB,在題(1)中的拋物線上是否存在點P,使△PAB是以AB為直角邊的直角三角形?若存在,求出點P的坐標(biāo);若不存在,請說明理由;
(3)如圖(2),連接AC,E為線段AC上任意一點(不與A、C重合)經(jīng)過A、E、O三點的圓交直線AB于點F,當(dāng)△OEF的面積取得最小值時,求點E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠B=30°,點D在BC邊上,點E在AC邊上,AD=BD,DE=CE,若△ADE為等腰三角形,則∠C的度數(shù)為( 。
A. 20° B. 20°或30° C. 30°或40° D. 20°或40°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com