【題目】如圖,四邊形ABCD中,AC⊥BD垂足為點E,點F,M分別是AB,BC的中點,BN平分∠ABE交AM于點N,AB=AC=BD,連接NF.
(1)判斷線段MN與線段BM的位置關系與數(shù)量關系,說明理由;
(2)如果CD=5,求NF的長.
【答案】(1)位置關系:MN⊥BM,數(shù)量關系:MN=BM,理由見解析;(2)NF=.
【解析】
(1)根據AB=AC,點M是BC的中點,可證MN⊥BM,AM平分∠BAC,再根據BN平分∠ABE可得出∠MNB的度數(shù),從而可得MN=BM;
(2)連接FM,可證FM∥AC,F(xiàn)M=AC,從而可得,結合(1)可得,再根據等式的性質通過倒角的關系可知∠NMF=∠CBD,從而可證△MFN∽△BDC,從而即可求出答案.
(1)位置關系:MN⊥BM,數(shù)量關系:MN=BM,
理由如下:∵AB=AC,點M是BC的中點,
∴AM⊥BC,AM平分∠BAC,
即MN⊥BM,
∵BN平分∠ABE,
∴∠EBN=∠ABN,
∵AC⊥BD,
∴∠AEB=90°,
∴∠EAB+∠EBA=90°,
∴∠MNB=∠NAB+∠ABN=(∠EAB+∠EBA)=45°,且AM⊥BC,
∴∠MBN=45°=∠MNB,
∴MN=BM;
(2)連接FM,
∵點F,M分別是AB,BC的中點,
∴FM∥AC,F(xiàn)M=AC,
∵AC=BD,
∴FM=BD,即,
由(1)知△BMN是等腰直角三角形,
∴MN=BM=BC,即,
∴,
∵AM⊥BC,
∴∠NMF+∠FMB=90°,
∵FM∥AC,
∴∠ACB=∠FMB,
∵∠CEB=90°,
∴∠ACB+∠CBD=90°,
∴∠CBD+∠FMB=90°,
∴∠NMF=∠CBD,且,
∴△MFN∽△BDC,
∴,且CD=5,
∴FN=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,⊙O的直徑AB=12,P是弦BC上一動點(與點B,C不重合),∠ABC=30°,過點P作PD⊥OP交⊙O于點D.
(1)如圖2,當PD∥AB時,求PD的長;
(2)如圖3,當時,延長AB至點E,使BE=AB,連接DE.
①求證:DE是⊙O的切線;
②求PC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知中,,,,把線段沿射線方向平移至,直線與直線交于點,又聯(lián)結與直線交于點.
(1)若,求的長;
(2)設,,試求關于的函數(shù)解析式;
(3)當為多少時,以、、為頂點的三角形與相似?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù) y1 kx ax a 的圖象與 x 軸交于 A、B 兩點(點 A 在點 B 的左側),已知函數(shù)y2 kx bx b 的圖象與 x 軸交于 C、D 兩點(點 C 在點 D 的左側),其中 k 0, a b
(1)求證:函數(shù) y1 與 y2 的圖象交點落在一條定直線上;
(2)若 AB=CD,求 a、b和k 滿足的關系式;
(3)是否存在函數(shù) y1 與 y2 ,使得 B,C 為線段 AD 的三等分點?若存在,求的值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的袋子里裝有3個黑球和若干白球,它們除顏色外都相同.在不允許將球倒出來數(shù)的前提下,小明為估計其中白球數(shù),采用如下辦法:隨機從中摸出一球,記下顏色后放回袋中,充分搖勻后,再隨機摸出一球,記下顏色,…不斷重復上述過程.小明共摸100次,其中20次摸到黑球.根據上述數(shù)據,小明估計口袋中白球大約有( )
A. 10個 B. 12 個 C. 15 個 D. 18個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠BAC=90°,AB=AC,過點A作邊BC的垂線AF交DC的延長線于點E,點F是垂足,連接BE,DF,DF交AC于點O。則下列結論:①四邊形ABCD是正方形;②CO:BE=1:3;③DE=BC;④S四邊形OCEF=S△AOD 正確的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據相似多邊形的定義,我們把四個角分別相等,四條邊成比例的兩個凸四邊形叫做相似四邊形.相似四邊形對應邊的比叫做相似比.
(1)某同學在探究相似四邊形的判定時,得到如下三個命題,請判斷它們是否正確(直接在橫線上填寫“真”或“假”).
①條邊成比例的兩個凸四邊形相似;( 命題)
②三個角分別相等的兩個凸四邊形相似;( 命題)
③兩個大小不同的正方形相似.( 命題)
(2)如圖1,在四邊形ABCD和四邊形A1B1C1D1中,∠ABC=∠A1B1C1,∠BCD=∠B1C1D1,,求證:四邊形ABCD與四邊形A1B1C1D1相似.
(3)如圖2,四邊形ABCD中,AB∥CD,AC與BD相交于點O,過點O作EF∥AB分別交AD,BC于點E,F.記四邊形ABFE的面積為S1,四邊形EFDE的面積為S2,若四邊形ABFE與四邊形EFCD相似,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,AB是⊙O的直徑,BC是弦,∠B=30°,延長BA到D,使∠BDC=30°.
(1)求證:DC是⊙O的切線;
(2)若AB=2,求DC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:關于三角函數(shù)還有如下的公式:
sin(α±β)=sinαcosβ±cosαsinβ
tan(α±β)=
利用這些公式可以將一些不是特殊角的三角函數(shù)轉化為特殊角的三角函數(shù)來求值.
例:tan75°=tan(45°+30°)===
根據以上閱讀材料,請選擇適當?shù)墓浇獯鹣旅鎲栴}:
(1)計算:sin15°;
(2)某校在開展愛國主義教育活動中,來到烈士紀念碑前緬懷和紀念為國捐軀的紅軍戰(zhàn)士.李三同學想用所學知識來測量如圖紀念碑的高度.已知李三站在離紀念碑底7米的C處,在D點測得紀念碑碑頂?shù)难鼋菫?5°,DC為米,請你幫助李三求出紀念碑的高度.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com