【題目】如圖,已知點A3,4),點B為直線x=﹣2上的動點,點Cx0)且﹣2x3BCAC垂足為點C,連接AB.若ABy軸正半軸的所夾銳角為α,當tanα的值最大時x的值為( 。

A.B.C.1D.

【答案】A

【解析】

設直線x2x軸交于G,過AAH⊥直線x2H,AFx軸于F,根據(jù)平行線的性質得到∠ABHα,由三角函數(shù)的定義得到tanα,即可得當BH最小時tanα有最大值;即BG最大時,tanα有最大值,然后證明△ACF∽△CBG,根據(jù)相似三角形的性質列出比例式,最后根據(jù)二次函數(shù)的性質即可得到結論.

如圖,設直線x=﹣2x軸交于G,過AAH⊥直線x=﹣2HAFx軸于F,

BHy軸,

∴∠ABHα,

RtABH中,tanα

tanαBH的增大而減小,

∴當BH最小時tanα有最大值;即BG最大時,tanα有最大值,

∵∠BGC=∠ACB=∠AFC90°,

∴∠GBC+BCG=∠BCG+ACF90°

∴∠GBC=∠ACF,

∴△ACF∽△CBG

,

BG=y,則,

∴當x時,BG取最大值,tanα取最大值,

故選:A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某商場試銷一種成本為60/件的夏季服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于成本的50%,經市場試銷調研發(fā)現(xiàn),日銷售量y(件)與售價x(元/件)符合一次函數(shù)ykx+b,且當售價80/件時,日銷量為70件,當售價為70元件時,日銷量為80

1)求一次函數(shù)ykx+b的表達式;

2)若該商場每天獲得利潤為w元,試寫出利潤w與售價x之間的關系式,并求出售價定為多少元時,商場每天可獲得最大利潤,最大利潤是多少元?(利潤=銷售收入﹣進貨成本,不含其他支出)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以G0,2)為圓心,半徑為4的圓與x軸交于A,B兩點,與y軸交于C,D兩點,點EG上一動點,且點E在第一象限,CFAE于點F,當點EG的圓周上運動的過程中,線段BF的長度的最小值為( 。

A.3B.22C.62D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑,弦于點,點上,恰好經過圓心,連接.

1)若,,求的直徑;

2)若,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊙O的直徑,CD⊙O上,連結BC,過DPF∥ACABE,交⊙OF,交BC于點G,交過B點的直線于點P,且∠BPF=∠ADC

1)判斷直線BP⊙O的位置關系,并說明理由;

2)若⊙O的半徑為AC=2,BE=1,求BP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線PD垂直平分⊙O的半徑OA于點B,PD⊙O于點C,D,PE⊙O的切線,E為切點,連結AE,交CD于點F

1)若⊙O的半徑為8,求CD的長;

2)證明:PE=PF

3)若PF=13,sinA=,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是

A.袋中有形狀、大小、質地完全一樣的5個紅球和1個白球,從中隨機抽出一個球,一定是紅球

B.天氣預報“明天降水概率10%”,是指明天有10%的時間會下雨

C.某地發(fā)行一種福利彩票,中獎率是千分之一,那么,買這種彩票1000張,一定會中獎

D.連續(xù)擲一枚均勻硬幣,若5次都是正面朝上,則第六次仍然可能正面朝上

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】AD為直徑的AEB、交DEC,且B為弧AC中心.

1)判斷形狀,并說明理由.

2)連接BC,求證

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC,以AC為邊在△ABC外作等腰△ACD,其中ACAD

1)如圖1,若AB為邊在△ABC外作△ABE,ABAE,∠DAC=∠EAB60°,求∠BFC的度數(shù);

2)如圖2,∠ABCα,∠ACDβBC4,BD6

α30°,β60°,AB的長為   ;

若改變αβ的大小,且α+β90°,求△ABC的面積.

查看答案和解析>>

同步練習冊答案