【題目】如圖(1),一架云梯AB斜靠在一豎直的墻上,云梯的頂端A距地面15米,梯子的長度比梯子底端B離墻的距離大5.

1)這個云梯的底端B離墻多遠(yuǎn)?

2)如圖(2),如果梯子的頂端下滑了8mAC的長),那么梯子的底部在水平方向右滑動了多少米?

【答案】1)這個云梯的底端B離墻20米;(2)梯子的底部在水平方向右滑動了4.

【解析】

1)由題意得OA=15米,AB-OB=5米,根據(jù)勾股定理OA2+OB2=AB2,可求出梯子底端離墻有多遠(yuǎn);
2)由題意得此時CO=7米,CD=AB=25米,由勾股定理可得出此時的OD,繼而能和(1)的OB進(jìn)行比較.

解:(1)設(shè)梯子的長度為米,則云梯底端B離墻為米。

這個云梯的底端B離墻20米。

2)∵

=576

梯子的底部在水平方向右滑動了4米。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如圖1,在△ABC和△ADE中,AB=AC=AD=AE,當(dāng)∠BAC+∠DAE=180° 時,我們稱△ABC與△DAE互為“頂補等腰三角形”,△ABC的邊BC上的高線AM叫做△ADE的“頂心距”,點A叫做“旋補中心”.

(1)特例感知:在圖2,圖3中,△ABC與△DAE互為“頂補等腰三角形”,AM是“頂心距”。

①如圖2,當(dāng)∠BAC=90°時,AM與DE之間的數(shù)量關(guān)系為AM=   DE;

②如圖3,當(dāng)∠BAC=120°,ED=6時,AM的長為   。

(2)猜想論證:

在圖1中,當(dāng)∠BAC為任意角時,猜想AM與DE之間的數(shù)量關(guān)系,并給予證明。

(3)拓展應(yīng)用

如圖4,在四邊形ABCD中,AD=AB,CD=BC,∠B=90°,∠A=60°,CA=,在四邊ABCD的內(nèi)部找到點P,使得△PAD與△PBC互為“頂補等腰三角形”。并回答下列問題。

①請在圖中標(biāo)出點P的位置,并描述出該點的位置為 ;

②直接寫出△PBC的“頂心距”的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】墻壁處有一盞燈(如圖),小明站在處測得他的影長與身長相等都為,小明向墻壁走處發(fā)現(xiàn)影子剛好落在A點,則燈泡與地面的距離________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線軸交于點,與軸交于點,已知點

1)求出點,點的坐標(biāo).

2是直線上一動點,且的面積相等,求點坐標(biāo).

3)如圖2,平移直線,分別交軸,軸于交于點,過點作平行于軸的直線,在直線上是否存在點,使得是等腰直角三角形?若存在,請直接寫出所有符合條件的點的坐標(biāo).

1 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,設(shè)一次函數(shù)的圖象是直線.

1)如果把向下平移個單位后得到直線,求的值;

2)當(dāng)直線過點和點時,且,求的取值范圍;

3)若坐標(biāo)平面內(nèi)有點,不論取何值,點均不在直線上,求所需滿足的條件.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠A=∠C=90°.

(1)用直尺和圓規(guī)作⊙O,使它經(jīng)過A、B、D三點(保留作圖痕跡);

(2)C是否在⊙O上?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解九年級名學(xué)生的體育綜合素質(zhì),隨機抽查了名學(xué)生進(jìn)行體育綜合測試,所得成績整理分成五組,并制成如下頻數(shù)分布表和扇形統(tǒng)計圖。

頻數(shù)分布表:

組別

成績(分)

頻數(shù)

請你根據(jù)以上圖表提供的信息,解答下列問題:

(1)頻數(shù)分布表中的 ;

(2)扇形統(tǒng)計圖中,組所對應(yīng)的扇形圓心角的度數(shù)是_ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)市政府綠色出行的號召,小張上班由自駕車改為騎公共自行車.已知小張家距上班地點10千米.他騎公共自行車比自駕車平均每小時少行駛45千米,他從家出發(fā)到上班地點,騎公共自行車所用的時間是自駕車所用的時間的4倍.小張騎公共自行車平均每小時行駛多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,BC=a AB=c,AC=b,則不能作為判定△ABC是直角三角形的條件的是(

A.B.A∶∠B∶∠C=1∶4∶3

C.abc =7∶24∶25D.abc =4∶5∶6

查看答案和解析>>

同步練習(xí)冊答案