【題目】如圖,已知直線與雙曲線交于A、B兩點(diǎn),點(diǎn)B坐標(biāo)為(-4,-2),C為雙曲線上一點(diǎn),且在第一象限內(nèi),若AOC面積為6,則點(diǎn)C坐標(biāo)為(

A. 4,2 B. 2,3 C. 3,4 D. 2,4

【答案】D

【解析】

∵點(diǎn)B(4,2)在雙曲線上, k=8.

∵點(diǎn)A,點(diǎn)B關(guān)于原點(diǎn)對(duì)稱,所以A(4,2),

如圖,過(guò)點(diǎn)AAEx軸于E,過(guò)點(diǎn)CCFx軸于F,設(shè)點(diǎn)C的坐標(biāo)為 ,

SAOC=SCOF+S梯形ACFE-SAOE .∵△AOC的面積為6, ,整理得,a2+6a16=0,

解得a1=2,a2=8(舍去),∴點(diǎn)C的坐標(biāo)為(2,4).

AEx點(diǎn)E, CFx點(diǎn)F.

SAOC=SAOE+S梯形ACFESCOF.

∵△AOC的面積為6, ,即 .

解之得:a=8或a=2(舍去)

∴點(diǎn)C的坐標(biāo)為(8,1).

故答案為:(2,4)或(8,1).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AE∥BF,先按(1)的要求作圖,再按(2)的要求證明
(1)用直尺和圓規(guī)作出∠ABF的平分線BD交AE于點(diǎn)D,連接BD,再作出BD的中點(diǎn)O(不寫作法,保留作圖痕跡)
(2)連接(1)所作圖中的AO并延長(zhǎng)與BE相交于點(diǎn)C,連接DC,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義一種關(guān)于“⊙”的新運(yùn)算,觀察下列式子:
1⊙3=1×4+3=7; 3⊙(﹣1)=3×4+(﹣1)=11;
5⊙4=5×4+4=24; 4⊙(﹣3)=4×4+(﹣3)=13.
請(qǐng)你想一想:5⊙(﹣6)=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明拿兩個(gè)大小不等直角三角板作拼圖,如圖①小三角板的斜邊與大三角板直角邊正好重合,已知: AD=1,∠B=∠ ACD=30°,

(1)A B的長(zhǎng)=__________;四邊形ABCD的面積=___________(直接填空);

(2)如圖②,若小明將小三角板ACD沿著射線AB方向平移,設(shè)平移的距離為m(平移距離指點(diǎn)A沿AB方向所經(jīng)過(guò)的線段長(zhǎng)度).當(dāng)點(diǎn)D平移到線段大三角板ABC的邊上時(shí),直接寫出相應(yīng)的m的值.

(3)如圖③,小明將小三角板ACD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)一個(gè)角α(0°<α<180°),記旋轉(zhuǎn)中的△ACD為△AC′D′,在旋轉(zhuǎn)過(guò)程中,設(shè)C′D′所在的直線與直線BC交于點(diǎn)P,與直線AB交于點(diǎn)Q.是否存在這樣的P、Q兩點(diǎn),使△BPQ為等腰三角形?若存在,請(qǐng)直接求出此時(shí)D’Q的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將直線y=2x+4向下平移3個(gè)單位,則得到的新直線的解析式為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說(shuō)法:①a>0 ②2a+b=0 ③a+b+c>0 ④當(dāng)﹣1<x<3時(shí),y>0,其中正確的個(gè)數(shù)為(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,∠ABD的平分線BE交AD于點(diǎn)E,∠CDB的平分線DF交BC于點(diǎn)F,連接BD.
(1)求證:△ABE≌△CDF;
(2)若AB=DB,求證:四邊形DFBE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】10分)如圖,已知線段AB上有兩點(diǎn)C,D,且ACBD,M,N分別是線段AC,AD的中點(diǎn),若ABacm,ACBDbcm,且a,b滿足(a1020.

1)求AB,AC的長(zhǎng)度;

2)求線段MN的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果單項(xiàng)式3xm+6y2與x3yn可以合并,那么(m+n)2017=

查看答案和解析>>

同步練習(xí)冊(cè)答案