【題目】某校某次外出游學(xué)活動分為三類,因資源有限,七年級2班分配到25個名額,其中甲類4個、乙類11個、丙類10個,已知該班有50名學(xué)生,班主任準(zhǔn)備了50個簽,其中甲類、乙類、丙類按名額設(shè)置、25個空簽,采取抽簽的方式來確定名額分配,請解決下列問題
(1)該班小明同學(xué)恰好抽到丙類名額的概率是多少?
(2)該班小麗同學(xué)能有幸去參加游學(xué)活動的概率是多少?
(3)后來,該班同學(xué)強(qiáng)烈呼吁名額太少,要求抽到甲類的概率要達(dá)到20%,則還要爭取甲類名額多少個?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD為△ABC的高,BE為△ABC的角平分線,若∠EBA=32°,∠AEB=70°.
(1)求∠CAD的度數(shù);
(2)若點(diǎn)F為線段BC上任意一點(diǎn),當(dāng)△EFC為直角三角形時,則∠BEF的度數(shù)為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店決定購進(jìn)A、B兩種紀(jì)念品.若購進(jìn)A種紀(jì)念品10件,B種紀(jì)念品5件,需要1000元;若購進(jìn)A種紀(jì)念品5件,B種紀(jì)念品3件,需要550元.
(1)求購進(jìn)A、B兩種紀(jì)念品每件各需多少元?
(2)若該商店決定拿出1萬元全部用來購進(jìn)這兩種紀(jì)念品,考慮到市場需求,要求購進(jìn)A種紀(jì)念品的數(shù)量不少于B種紀(jì)念品數(shù)量的6倍,且不超過B種紀(jì)念品數(shù)量的8倍,那么該商店共有幾種進(jìn)貨方案?
(3)若銷售每件A種紀(jì)念品可獲利潤20元,每件B 種紀(jì)念品可獲利潤30元,在(2)的各種進(jìn)貨方案中,哪一種方案獲利最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一科技小組進(jìn)行了機(jī)器人行走性能試驗(yàn),在試驗(yàn)場地有A、B、C三點(diǎn)順次在同一筆直的賽道上,甲、乙兩機(jī)器人分別從A、B兩點(diǎn)同時同向出發(fā),經(jīng)過7min同時到達(dá)C點(diǎn),乙機(jī)器人始終以60m/min的速度行走,如圖是甲、乙兩機(jī)器人之間的距離y(m)與他們的行走時間x(min)之間的圖象,請結(jié)合圖象,回答下列問題:
(1)A、B兩點(diǎn)之間的距離是 m,甲機(jī)器人前2min的速度為 m/min.
(2)若前3min甲機(jī)器人的速度不變,求出前3min,甲、乙兩機(jī)器人之間的距離y(m)與他們的行走時間r(min)之間的關(guān)系式.
(3)求出兩機(jī)器人出發(fā)多長時間相距28m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周末,小華和小亮想用所學(xué)的數(shù)學(xué)知識測量家門前小河的寬.測量時,他們選擇了河對岸邊的一棵大樹,將其底部作為點(diǎn)A,在他們所在的岸邊選擇了點(diǎn)B,使得AB與河岸垂直,并在B點(diǎn)豎起標(biāo)桿BC,再在AB的延長線上選擇點(diǎn)D豎起標(biāo)桿DE,使得點(diǎn)E與點(diǎn)C、A共線.
已知:CB⊥AD,ED⊥AD,測得BC=1m,DE=1.5m,BD=8.5m.測量示意圖如圖所示.請根據(jù)相關(guān)測量信息,求河寬AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在復(fù)習(xí)課上,wsy老師要求寫出幾個與實(shí)數(shù)有關(guān)的結(jié)論:小明同學(xué)寫了以下5個:
①任何無理數(shù)都是無限不循環(huán)小數(shù);
②有理數(shù)與數(shù)軸上的點(diǎn)一一對應(yīng);
③在1和3之間的無理數(shù)有且只有這5個;
④是分?jǐn)?shù),它是有理數(shù);
⑤由四舍五入得到的近似數(shù)7.30表示大于或等于7.295,而小于7.305的數(shù).其中正確的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD⊥CD,BC⊥CD,E為CD的中點(diǎn),連接AE,BE,BE⊥AE,延長AE交BC的延長線于點(diǎn)F。
證明:(1)FC=AD;
(2)AB=BC+AD。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線,與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).
(1)求點(diǎn)A和點(diǎn)B的坐標(biāo);
(2)若點(diǎn)P(m,n)是拋物線上的一點(diǎn),過點(diǎn)P作x軸的垂線,垂足為點(diǎn)D.
①在的條件下,當(dāng)時,n的取值范圍是,求拋物線的表達(dá)式;
②若D點(diǎn)坐標(biāo)(4,0),當(dāng)時,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com