如圖,已知直線交坐標(biāo)軸于兩點(diǎn),以線段為邊向上作正方形

,過點(diǎn)的拋物線與直線另一個交點(diǎn)為

(1)請直接寫出點(diǎn)的坐標(biāo);

(2)求拋物線的解析式;

(3)若正方形以每秒個單位長度的速度沿射線下滑,直至頂點(diǎn)落在軸上時停止.設(shè)正方形落在軸下方部分的面積為,求關(guān)于滑行時間的函數(shù)關(guān)系式,并寫出相應(yīng)自變量的取值范圍;


1);(2)

(3)當(dāng)時,

當(dāng)時, ;

當(dāng)時,=

【解析】

拋物線過點(diǎn),

解得

;

(3)①當(dāng)點(diǎn)A運(yùn)動到點(diǎn)F時,

當(dāng)時,如圖1,

,

; 

②當(dāng)點(diǎn)運(yùn)動到軸上時,,

當(dāng)時,如圖2,

,

,

;

③當(dāng)點(diǎn)運(yùn)動到軸上時,,

當(dāng)時,如圖3,

,

,

,

,

=. 

考點(diǎn):二次函數(shù)的綜合題

點(diǎn)評:此類問題綜合性強(qiáng),難度較大,在中考中比較常見,一般作為壓軸題,題目比較典型.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知ABCD,對角線AC與BD相交于點(diǎn)O,點(diǎn)P在邊AD上,過點(diǎn)P分別作PE⊥AC、PF⊥BD,垂足分別為E、F。

(1)若PF=PE,PE=,EO=1,求∠EPF的度數(shù);

(2)若點(diǎn)P是AD的中點(diǎn),點(diǎn)F是DO的中點(diǎn),PE=PF,BF =BC+-4,求BC的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖①,在平面直角坐標(biāo)系中,已知點(diǎn)A(2,0),點(diǎn)B(0,4),點(diǎn)E(0,1),如圖②,將△AEO沿x軸向左平移得到△A′E′O′,連接A′B、BE′。

(1)設(shè)AA′=m(m >0),試用含m的式子表示,并求出使取得最小值時點(diǎn)E′的坐標(biāo);

(2)當(dāng)A′B+BE′取得最小值時,求點(diǎn)E′的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,梯形ABCD中,AB∥DC,DE⊥AB,CB⊥AB,且AE = EB = 5,DE = 12,動點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DC-CB以每秒1個單位長的速度運(yùn)動到點(diǎn)B停止。設(shè)運(yùn)動時間為t秒,y = SEPB,則y與t的函數(shù)圖象大致是【    】

  A.     B.     C.     D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


為了考察冰川融化的狀況,一支科考隊在某冰川上設(shè)定一個以大本營O為圓心,半徑為4km 圓形考察區(qū)域,線段P1、P2是冰川的部分邊界線(不考慮其它邊界),當(dāng)冰川融化時,邊界線沿著與其垂直的方向朝考察區(qū)域平行移動.若經(jīng)過n年,冰川的邊界線P1P2移動的距離為s(km),并且s與n(n為正整數(shù))的關(guān)系是.以O(shè)為原點(diǎn),建立如圖所示的平面直角坐標(biāo)系,其中P1、P2的坐標(biāo)分別是(-4,9)、(-13,-3).

(1)求線段P1P2所在的直線對應(yīng)的函數(shù)關(guān)系式;

(2)求冰川的邊界線移動到考察區(qū)域所需要的最短時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


某數(shù)學(xué)興趣小組對線段上的動點(diǎn)問題進(jìn)行探究,已知AB=8.

問題思考:

如圖1,點(diǎn)P為線段AB上的一個動點(diǎn),分別以AP、BP為邊在同側(cè)作正方形APDC與正方形PBFE.

(1)在點(diǎn)P運(yùn)動時,這兩個正方形面積之和是定值嗎?如果時求出;若不是,求出這兩個正方形面積之和的最小值.

(2)分別連接AD、DF、AF,AF交DP于點(diǎn)A,當(dāng)點(diǎn)P運(yùn)動時,在△APK、△ADK、△DFK中,是否存在兩個面積始終相等的三角形?請說明理由.

問題拓展:

(3)如圖2,以AB為邊作正方形ABCD,動點(diǎn)P、Q在正方形ABCD的邊上運(yùn)動,且PQ=8.若點(diǎn)P從點(diǎn)A出發(fā),沿A→B→C→D的線路,向D點(diǎn)運(yùn)動,求點(diǎn)P從A到D的運(yùn)動過程中,PQ的中點(diǎn)O所經(jīng)過的路徑的長。

 (4)如圖(3),在“問題思考”中,若點(diǎn)M、N是線段AB上的兩點(diǎn),且AM=BM=1,點(diǎn)G、H分別是邊CD、EF的中點(diǎn).請直接寫出點(diǎn)P從M到N的運(yùn)動過程中,GH的中點(diǎn)O所經(jīng)過的路徑的長及OM+OB的最小值.

    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A、B的坐標(biāo)分別為(8,0)、(0,6).動點(diǎn)Q從點(diǎn)O、動點(diǎn)P從點(diǎn)A同時出發(fā),分別沿著OA方向、AB方向均以1個單位長度/秒的速度勻速運(yùn)動,運(yùn)動時間為t(秒)(0<t≤5).以P為圓心,PA長為半徑的⊙P與AB、OA的另一個交點(diǎn)分別為點(diǎn)C、D,連結(jié)CD、QC.

(1)當(dāng)t為何值時,點(diǎn)Q與點(diǎn)D重合?

(2)當(dāng)t為何值時,DQ=2AD?

(3)求線段QC所在直線與⊙P相切時t的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在直角坐標(biāo)系中,點(diǎn)A(0,4),B(-3,4),C(-6,0),動點(diǎn)P從點(diǎn)A出發(fā)以1個單位/秒的速度在y軸上向下運(yùn)動,動點(diǎn)Q同時從點(diǎn)C出發(fā)以2個單位/秒的速度在x軸上向右運(yùn)動,過點(diǎn)P作PD⊥y軸,交OB于D,連接DQ.當(dāng)點(diǎn)P與點(diǎn)O重合時,兩動點(diǎn)均停止運(yùn)動.設(shè)運(yùn)動的時間為t秒.

(1)當(dāng)t=1時,求線段DP的長;

(2)連接CD,設(shè)△CDQ的面積為S,求S關(guān)于t的函數(shù)解析式,并求出S的最大值;

(3)運(yùn)動過程中是否存在某一時刻,使△ODQ與△ABC相似?若存在,請求出所有滿足要求的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與y軸交于點(diǎn)C,點(diǎn)P是拋物線上的一個動點(diǎn),點(diǎn)P關(guān)于y軸的對稱點(diǎn)Q,連接PO,PC,QO,QC,得到四邊形,是否存在點(diǎn)P,使四邊形為菱形?若存在,求出此時點(diǎn)P的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

同步練習(xí)冊答案