【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+bx+c的圖象與坐標(biāo)軸交于A,B,C三點(diǎn),其中點(diǎn)A的坐標(biāo)為(﹣3,0),點(diǎn)B的坐標(biāo)為(4,0),連接AC,BC.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),在線段AC上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C作勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),在線段OB上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)B作勻速運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.連接PQ.

(1)填空:b=   c=   ;

(2)在點(diǎn)P,Q運(yùn)動(dòng)過(guò)程中,APQ可能是直角三角形嗎?請(qǐng)說(shuō)明理由;

(3)在x軸下方,該二次函數(shù)的圖象上是否存在點(diǎn)M,使PQM是以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若存在,請(qǐng)求出運(yùn)動(dòng)時(shí)間t;若不存在,請(qǐng)說(shuō)明理由;

(4)如圖,點(diǎn)N的坐標(biāo)為(﹣,0),線段PQ的中點(diǎn)為H,連接NH,當(dāng)點(diǎn)Q關(guān)于直線NH的對(duì)稱點(diǎn)Q′恰好落在線段BC上時(shí),請(qǐng)直接寫出點(diǎn)Q′的坐標(biāo).

【答案】1b= c=4;(2APQ不可能是直角三角形,理由見(jiàn)解析;(3t=;(4Q′ ).

【解析】試題分析:1)設(shè)拋物線的解析式為y=ax+3)(x4).將a=代入可得到拋物線的解析式,從而可確定出b、c的值;

2)連結(jié)QC.先求得點(diǎn)C的坐標(biāo),則PC=5﹣t,依據(jù)勾股定理可求得AC=5,CQ2=t2+16,接下來(lái),依據(jù)CQ2﹣CP2=AQ2﹣AP2列方程求解即可;

3)過(guò)點(diǎn)PDEx軸,分別過(guò)點(diǎn)M、QMDDEQEDE,垂足分別為DE,MDx軸與點(diǎn)F,過(guò)點(diǎn)PPGx軸,垂足為點(diǎn)G,首先證明PAG∽△ACO,依據(jù)相似三角形的性質(zhì)可得到PG=t,AG=t,然后可求得PEDF的長(zhǎng),然后再證明MDPPEQ,從而得到PD=EQ=tMD=PE=3+t,然后可求得FMOF的長(zhǎng),從而可得到點(diǎn)M的坐標(biāo),然后將點(diǎn)M的坐標(biāo)代入拋物線的解析式求解即可;

4)連結(jié)OP,取OP的中點(diǎn)R,連結(jié)RH,NR,延長(zhǎng)NR交線段BC與點(diǎn)Q′.首先依據(jù)三角形的中位線定理得到EH=QO=t,RHOQ,NR=AP=t,則RH=NR,接下來(lái),依據(jù)等腰三角形的性質(zhì)和平行線的性質(zhì)證明NH是∠QNQ′的平分線,然后求得直線NRBC的解析式,最后求得直線NRBC的交點(diǎn)坐標(biāo)即可

試題解析:1設(shè)拋物線的解析式為y=a(x+3)(x﹣4),

a=代入得:y=x2+x+4

b=,c=4

2)在點(diǎn)P、Q運(yùn)動(dòng)過(guò)程中,APQ不可能是直角三角形.

理由如下:連結(jié)QC

∵在點(diǎn)PQ運(yùn)動(dòng)過(guò)程中,∠PAQPQA始終為銳角,

∴當(dāng)APQ是直角三角形時(shí),則∠APQ=90°

x=0代入拋物線的解析式得:y=4,

C0,4).

AP=OQ=t,

PC=5﹣t,

∵在RtAOC中,依據(jù)勾股定理得:AC=5,在RtCOQ中,依據(jù)勾股定理可知:CQ2=t2+16,在RtCPQ中依據(jù)勾股定理可知:PQ2=CQ2﹣CP2,在RtAPQ中,AQ2﹣AP2=PQ2,

CQ2﹣CP2=AQ2﹣AP2,即(3+t2﹣t2=t2+16﹣5﹣t2,解得:t=4.5

∵由題意可知:0≤t≤4

t=4.5不和題意,即APQ不可能是直角三角形.

3)如圖所示:

過(guò)點(diǎn)PDEx軸,分別過(guò)點(diǎn)MQMDDE、QEDE,垂足分別為D、E,MDx軸與點(diǎn)F,過(guò)點(diǎn)PPGx軸,垂足為點(diǎn)G,則PGy軸,∠E=D=90°

PGy軸,

∴△PAG∽△ACO,

,即

PG=t,AG=t

PE=GQ=GO+OQ=AOAG+OQ=3t+t=3+t,DF=GP=t

∵∠MPQ=90°D=90°,

∴∠DMP+DPM=EPQ+DPM=90°,

∴∠DMP=EPQ

又∵∠D=E,PM=PQ,

∴△MDPPEQ,

PD=EQ=t,MD=PE=3+t,

FM=MDDF=3+tt=3tOF=FG+GO=PD+OAAG=3+tt=3+t,

M3t3+t).

∵點(diǎn)Mx軸下方的拋物線上,

3+t=×3t2+×3t+4,解得:t=

0≤t≤4,

t=

4)如圖所示:連結(jié)OP,取OP的中點(diǎn)R,連結(jié)RHNR,延長(zhǎng)NR交線段BC與點(diǎn)Q′

∵點(diǎn)HPQ的中點(diǎn),點(diǎn)ROP的中點(diǎn),

EH=QO=tRHOQ

A3,0),N ,0),

∴點(diǎn)NOA的中點(diǎn).

又∵ROP的中點(diǎn),

NR=AP=t,

RH=NR,

∴∠RNH=RHN

RHOQ,

∴∠RHN=HNO

∴∠RNH=HNO,即NH是∠QNQ′的平分線.

設(shè)直線AC的解析式為y=mx+n,把點(diǎn)A3,0)、C0,4)代入得: ,

解得:m= ,n=4,

∴直線AC的表示為y=x+4

同理可得直線BC的表達(dá)式為y=﹣x+4

設(shè)直線NR的函數(shù)表達(dá)式為y=x+s,將點(diǎn)N的坐標(biāo)代入得: ×+s=0,解得:s=2,

∴直線NR的表述表達(dá)式為y=x+2

將直線NR和直線BC的表達(dá)式聯(lián)立得: ,解得:x= ,y=,

Q′, ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+bx+1x軸交于兩點(diǎn)A(﹣1,0),B1,0),與y軸交于點(diǎn)C

1)求拋物線的解析式;

2)過(guò)點(diǎn)BBDCA拋物線交于點(diǎn)D,求四邊形ACBD的面積;

3)在x軸下方的拋物線上是否存在點(diǎn)M,過(guò)MMNx軸于點(diǎn)N,使以A、MN為頂點(diǎn)的三角形與△BCD相似?若存在,則求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】雅安地震牽動(dòng)著全國(guó)人民的心,某單位開(kāi)展了“一方有難,八方支援”賑災(zāi)捐款活動(dòng).第一天收到捐款10 000元,第三天收到捐款12 100元.

(1)如果第二天、第三天收到捐款的增長(zhǎng)率相同,求捐款增長(zhǎng)率;

(2)按照(1)中收到捐款的增長(zhǎng)速度,第四天該單位能收到多少捐款?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】周末,身高都為1.6的小芳、小麗來(lái)到溪江公園,準(zhǔn)備用她們所學(xué)的知識(shí)測(cè)算南塔的高度.如圖,小芳站在A處測(cè)得她看塔頂?shù)难鼋?/span> 45,小麗站在B處(AB與塔的軸心共線)測(cè)得她看塔頂?shù)难鼋?/span> 30.她們又測(cè)出A、B兩點(diǎn)的距離為30.假設(shè)她們的眼睛離頭頂都為10 cm,則可計(jì)算出塔高約為結(jié)果精確到0.01,參考數(shù)據(jù):1.414,1.732( ).

A36.21 B37.71 C40.98 D42.48

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線yx軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C

1)求直線AC的解析式;

2)如圖2,點(diǎn)Ea,b)是對(duì)稱軸右側(cè)拋物線上一點(diǎn),過(guò)點(diǎn)E垂直于y軸的直線與AC交于點(diǎn)Dm,n).點(diǎn)Px軸上的一點(diǎn),點(diǎn)Q是該拋物線對(duì)稱軸上的一點(diǎn),當(dāng)a+m最大時(shí),求點(diǎn)E的坐標(biāo),并直接寫出EQ+PQ+PB的最小值;

3)如圖3,在(2)的條件下,連結(jié)OD,將△AOD沿x軸翻折得到△AOM,再將△AOM沿射線CB的方向以每秒3個(gè)單位的速度沿平移,記平移后的△AOM為△AO'M',同時(shí)拋物線以每秒1個(gè)單位的速度沿x軸正方向平移,點(diǎn)B的對(duì)應(yīng)點(diǎn)為B'.△A'B'M'能否為等腰三角形?若能,請(qǐng)求出所有符合條件的點(diǎn)M'的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四邊形ABCD中,ABCD,BCCDAB2,CD3,在BC上取點(diǎn)PPBC不重合)連接PA延長(zhǎng)至E,使PA2AE,連接PD并延長(zhǎng)至F,使PD3FD,以PE、PF為邊作平行四邊形,另一個(gè)頂點(diǎn)為G,則PG長(zhǎng)度的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班10名學(xué)生校服尺寸與對(duì)應(yīng)人數(shù)如圖所示,那么這10名學(xué)生校服尺寸的中位數(shù)為_____cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,EAB的中點(diǎn),AD//EC,AED=B.

(1)求證:AED≌△EBC;

(2)當(dāng)AB=6時(shí),求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)軸于點(diǎn)、,交軸于點(diǎn),在軸上有一點(diǎn),連接.

(1)求二次函數(shù)的表達(dá)式;

(2)若點(diǎn)為拋物線在軸負(fù)半軸上方的一個(gè)動(dòng)點(diǎn),求面積的最大值;

(3)拋物線對(duì)稱軸上是否存在點(diǎn),使為等腰三角形,若存在,請(qǐng)直接寫出所有點(diǎn)的坐標(biāo),若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案