【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(﹣6,6),以A為頂點(diǎn)的∠BAC的兩邊始終與x軸交于B、C兩點(diǎn)(B在C左面),且∠BAC=45°.
(1)如圖,連接OA,當(dāng)AB=AC時(shí),試說(shuō)明:OA=OB.
(2)過(guò)點(diǎn)A作AD⊥x軸,垂足為D,當(dāng)DC=2時(shí),將∠BAC沿AC所在直線(xiàn)翻折,翻折后邊AB交y軸于點(diǎn)M,求點(diǎn)M的坐標(biāo).
【答案】(1)見(jiàn)解析;(2) M的坐標(biāo)為(0,3)或(0,-6)
【解析】
(1)利用等腰三角形的性質(zhì)求得∠BAO和∠ABC的度數(shù),然后利用等角對(duì)等邊即可證得;
(2)當(dāng)點(diǎn)C在點(diǎn)D右側(cè)時(shí),連接CM,過(guò)點(diǎn)A作AE⊥y軸于點(diǎn)E,證明△BAD≌△MAE,在Rt△COM中,由勾股定理即可求得M的坐標(biāo);當(dāng)點(diǎn)C在點(diǎn)D左側(cè)時(shí),連接CM,過(guò)點(diǎn)A作AF⊥y軸于點(diǎn)F,證明△BAD≌△MAF,同理,在Rt△COM中,由勾股定理即可求得M的坐標(biāo).
(1)∵AB=AC,∠BAC=45°,
∴∠ABC=∠ACB=67.5°.
過(guò)點(diǎn)A作AE⊥OB于E,
∵A(-6,6),
∴△AEO是等腰直角三角形,∠EAO=45°.
∵AB=AC,AE⊥OB,
∴∠BAE= ∠BAC=22.5°.
∴∠BAO=67.5°=∠ABC,
∴OA=OB.
(2)設(shè)OM=x,
當(dāng)點(diǎn)C在點(diǎn)D右側(cè)時(shí),如圖2,連接CM,過(guò)點(diǎn)A作AE⊥y軸于點(diǎn)E,
由∠BAM=∠DAE=90°,
可知:∠BAD=∠MAE;
∴在△BAD和△MAE中,
,
∴△BAD≌△MAE.
∴BD=EM=6-x.
又∵AC=AC,∠BAC=∠MAC,
∴△BAC≌△MAC.
∴BC=CM=8-x.
在Rt△COM中,由勾股定理得:
OC2+OM2=CM2,即42+x2=(8-x)2,
解得:x=3,
∴M點(diǎn)坐標(biāo)為(0,3).
當(dāng)點(diǎn)C在點(diǎn)D左側(cè)時(shí),如圖3,連接CM,過(guò)點(diǎn)A作AF⊥y軸于點(diǎn)F,
同理,△BAD≌△MAF,
∴BD=FM=6+x.
同理,
△BAC≌△MAC,
∴BC=CM=4+x.
在Rt△COM中,由勾股定理得:
OC2+OM2=CM2,即82+x2=(4+x)2,
解得:x=6,
∴M點(diǎn)坐標(biāo)為(0,-6).
綜上,M的坐標(biāo)為(0,3)或(0,-6).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形 ABCD,點(diǎn) E,F 分別在 AD,CD 上,且DE=CF,AF 與 BE 相交于點(diǎn)G.
(1)求證:AF⊥BE;
(2)若 AB=6,DE=2,AG的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠C=90°,∠BAC的平分線(xiàn)交BC 于D,且BD=5,CD=3,則AC=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以邊和為邊作等邊和,連接,,
判斷與的數(shù)量關(guān)系,并求與的夾角的度數(shù);
繼續(xù)探索,如圖,以的和為邊作正方形和,連接、,判斷和的數(shù)量關(guān)系,并求出此時(shí)與的夾角;
如圖中、分別是、的中點(diǎn),、分別是正方形的中心,順次連接,判斷四邊形的形狀并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于二次函數(shù)的圖象與性質(zhì),下列結(jié)論錯(cuò)誤的是 ( )
A. 當(dāng)x=3時(shí),函數(shù)有最大值-2
B. 當(dāng)x>3時(shí),y隨x的增大而減小
C. 拋物線(xiàn)可由 經(jīng)過(guò)平移得到
D. 該函數(shù)的圖象與x軸有兩個(gè)交點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年,在端午節(jié)前夕,三位同學(xué)到某超市調(diào)研一種進(jìn)價(jià)為2元的粽子的銷(xiāo)售情況.(售價(jià)不低于進(jìn)價(jià)).請(qǐng)根據(jù)小麗提供的信息,解答小華和小明提出的問(wèn)題.
認(rèn)真閱讀上面三位同學(xué)的對(duì)話(huà),請(qǐng)根據(jù)小麗提供的信息.
(1)解答小華的問(wèn)題;
(2)解答小明的問(wèn)題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)y=ax2+bx+c(a>0)的對(duì)稱(chēng)軸為直線(xiàn)x=-1,與x軸的一個(gè)交點(diǎn)為(x1,0),且0<x1<1,下列結(jié)論:①9a-3b+c>0;②b<c;③3a+c>0,其中正確結(jié)論兩個(gè)數(shù)有______。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分線(xiàn)交AC于D,則圖中共有等腰三角形( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,AD=8cm,BC=12cm,M是BC上一點(diǎn),且BM=9cm,點(diǎn)E從點(diǎn)A出發(fā)以1cm/s的速度向點(diǎn)D運(yùn)動(dòng),點(diǎn)F從點(diǎn)C出發(fā),以3cm/s的速度向點(diǎn)B運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn),另一點(diǎn)也隨之停止,設(shè)運(yùn)動(dòng)時(shí)間為t,則當(dāng)以A、M、E、F為頂點(diǎn)的四邊形是平行四邊形時(shí),t=__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com