【題目】兩個運(yùn)輸小隊(duì)分別從兩個倉庫以相同的工作效率調(diào)運(yùn)一批物資,兩隊(duì)同時開始工作.第二小隊(duì)工作5天后,由于技術(shù)問題檢修設(shè)備5天,為趕上進(jìn)度,再次開工后他們將工作效率提高到原先的2倍,結(jié)果和第一小隊(duì)同時完成任務(wù).在兩隊(duì)調(diào)運(yùn)物資的過程中,兩個倉庫物資的剩余量y t與第一小隊(duì)工作時間x天的函數(shù)圖像如圖所示.
(1)①求線段AC所表示的y與x之間的函數(shù)表達(dá)式;
②求點(diǎn)F的坐標(biāo),并解釋點(diǎn)F的實(shí)際意義.
(2)如果第二小隊(duì)沒有檢修設(shè)備,按原來的工作效率正常工作,那么他們完成任務(wù)的天數(shù)是 天.
【答案】(1)①y=-30x+360.②點(diǎn)F的坐標(biāo)為(8,120).點(diǎn)F的實(shí)際意義是:第一小隊(duì)工作8天后,兩個倉庫剩余的物資都為120 t.(2)9.
【解析】
(1)①用待定系數(shù)法求解即可;
②根據(jù)第一小隊(duì)的工作效率求出第二小隊(duì)再次開工后的工作效率,即可得到點(diǎn)F的縱坐標(biāo),代入①中解析式即可求出點(diǎn)F坐標(biāo),由題意可知點(diǎn)F的實(shí)際意義是:第一小隊(duì)工作8天后,兩個倉庫剩余的物資都為120 t;
(2)根據(jù)工作效率以及點(diǎn)F的縱坐標(biāo),求出不檢修設(shè)備的情況下還需要多少天完成任務(wù),相加即可.
解:(1)解:①設(shè)AC的函數(shù)表達(dá)式為y=kx+b,將(12,0),(0,360)代入y=kx+b,可得,
即y=-30x+360.
②第一小隊(duì)的工作效率為360÷12=30(t/天),
第二小隊(duì)再次開工后的工作效率為30×2=60(t/天),調(diào)運(yùn)物資為60×2=120(t),
即點(diǎn)E的坐標(biāo)為(10,120),所以點(diǎn)F的縱坐標(biāo)為120.
將y=120代入y=-30x+360,可得x=8,即點(diǎn)F的坐標(biāo)為(8,120).
點(diǎn)F的實(shí)際意義是:第一小隊(duì)工作8天后,兩個倉庫剩余的物資都為120 t.
(2)∵第二小隊(duì)工作5天后,倉庫剩余的物資為120 t ,
∴120÷30=4(天),
4+5=9(天),
∴如果第二小隊(duì)沒有檢修設(shè)備,按原來的工作效率正常工作,那么他們完成任務(wù)的天數(shù)是9天.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解同學(xué)們對垃圾分類知識的了解程度,增強(qiáng)同學(xué)們的環(huán)保意識某校數(shù)學(xué)興趣小組設(shè)計(jì)了“垃圾分類知識及投放情況”問卷,并在本校隨機(jī)抽取若干名同學(xué)進(jìn)行了問卷測試,根據(jù)測試成績分布情況,將測試成績分成A、B、C、D四組,繪制了如下統(tǒng)計(jì)圖表
問卷測試成績分組表
組別 | 分?jǐn)?shù)/分 |
A | 60<x≤70 |
B | 70<x≤80 |
C | 80<x≤90 |
D | 90<x≤100 |
(1)本次抽樣調(diào)查的樣本總量是 ;
(2)樣本中,測試成績在B組的頻數(shù)是 ,D組的頻率是 ;
(3)樣本中,這次測試成績的中位數(shù)落在 組;
(4)如果該校共有880名學(xué)生,請估計(jì)成績在90<x≤100的學(xué)生約有 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為正方形ABCD對角線的交點(diǎn),E為AB邊上一點(diǎn),F為BC邊上一點(diǎn),△EBF的周長等于BC的長.
(1)若AB=12,BE=3,求EF的長;
(2)求∠EOF的度數(shù);
(3)若OE=OF,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用如圖1的二維碼可以進(jìn)行身份識別.某校建立了一個身份識別系統(tǒng),圖2是某個學(xué)生的識別圖案,黑色小正方形表示1,白色小正方形表示0.將第一行數(shù)字從左到右依次記為,,,,那么可以轉(zhuǎn)換為該生所在班級序號,其序號為.如圖2第一行數(shù)字從左到右依次為0,1,0,1,序號為,表示該生為5班學(xué)生.表示6班學(xué)生的識別圖案是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BC>AB>AC,D是邊BC上的一個動點(diǎn)(點(diǎn)D不與點(diǎn)B、C重合),將△ABC沿AD折疊,點(diǎn)B落在點(diǎn)B'處,連接BB',B'C,若△BCB'是等腰三角形,則符合條件的點(diǎn)D的個數(shù)是
A. 0個B. 1個C. 2個D. 3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)興趣小組為了研究中小學(xué)男生身高y(cm)和年齡x(歲)的關(guān)系,從某市官網(wǎng)上得到了該市2017年統(tǒng)計(jì)的中小學(xué)男生各年齡組的平均身高,見下表:如圖已經(jīng)在直角坐標(biāo)系中描出了表中數(shù)據(jù)對應(yīng)的點(diǎn),并發(fā)現(xiàn)前5個點(diǎn)大致位于直線AB上,后7個點(diǎn)大致位于直線CD上.
年齡組x | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
男生平均身高y | 115.2 | 118.3 | 122.2 | 126.5 | 129.6 | 135.6 | 140.4 | 146.1 | 154.8 | 162.9 | 168.2 |
(1)該市男學(xué)生的平均身高從 歲開始增加特別迅速.
(2)求直線AB所對應(yīng)的函數(shù)表達(dá)式.
(3)直接寫出直線CD所對應(yīng)的函數(shù)表達(dá)式,假設(shè)17歲后該市男生身高增長速度大致符合直線CD所對應(yīng)的函數(shù)關(guān)系,請你預(yù)測該市18歲男生年齡組的平均身高大約是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校準(zhǔn)備購進(jìn)一批節(jié)能燈,已知1只A型節(jié)能燈和3只B型節(jié)能燈共需26元;3只A型節(jié)能燈和2只B型節(jié)能燈共需29元.
(1)求一只A型節(jié)能燈和一只B型節(jié)能燈的售價各是多少元;
(2)學(xué)校準(zhǔn)備購進(jìn)這兩種型號的節(jié)能燈共50只,并且A型節(jié)能燈的數(shù)量不多于B型節(jié)能燈數(shù)量的3倍,請?jiān)O(shè)計(jì)出最省錢的購買方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對角線AC相交于點(diǎn)F,設(shè)DE=x.
(1)用含x的代數(shù)式表示線段CF的長;
(2)如果把△CAE的周長記作C△CAE,△BAF的周長記作C△BAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;
(3)當(dāng)∠ABE的正切值是時,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李老師為了解某校學(xué)生完成數(shù)學(xué)課前預(yù)習(xí)的具體情況,對部分學(xué)生進(jìn)行了跟蹤調(diào)查,并將調(diào)查結(jié)果分為四類,A:很好;B:較好;C:一般;D:較差.繪制成如下統(tǒng)計(jì)圖.
(1)李老師一共調(diào)查了多少名同學(xué)?并將下面條形統(tǒng)計(jì)圖補(bǔ)充完整.
(2)若該校有1000名學(xué)生,則數(shù)學(xué)課前預(yù)習(xí)“很好”和“較好”總共約多少人?
(3)為了共同進(jìn)步,李老師想從被調(diào)查的A類和D類學(xué)生中各隨機(jī)選取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.(要求列表或樹狀圖)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com