如圖,已知一次函數(shù)(m為常數(shù))的圖象與反比例函數(shù)(k為常數(shù),)的圖象相交于點 A(1,3).

(1)求這兩個函數(shù)的解析式及其圖象的另一交點的坐標(biāo);
(2)觀察圖象,寫出使函數(shù)值的自變量的取值范圍.

(1)一次函數(shù)解析式為:y1=x+2,B(﹣3,﹣1);
(2)根據(jù)圖象得:函數(shù)值y1≥y2的自變量x的取值范圍是:x≥1或﹣3≤x<0.

解析試題分析:(1)利用待定系數(shù)法把 A(1,3)代入一次函數(shù)y1=x+m與反比例函數(shù)中,可解出m、k的值,進而可得解析式,求B點坐標(biāo),就是把兩函數(shù)解析式聯(lián)立,求出x、y的值;
(2)根據(jù)函數(shù)圖象可以直接寫出答案.
試題解析:(1)∵一次函數(shù)y1=x+m(m為常數(shù))的圖象與反比例函數(shù)(k為常數(shù),k≠0)的圖象相交于點 A(1,3),
∴3=1+m,k=1×3,
∴m=2,k=3,
∴一次函數(shù)解析式為:y1=x+2,
反比例函數(shù)解析式為:y2=,
,
解得:x1=﹣3,x2=1,
當(dāng)x1=﹣3時,y1=﹣1,
x2=1時,y1=3,
∴兩個函數(shù)的交點坐標(biāo)是:A(1,3)和B(﹣3,﹣1)
∴B(﹣3,﹣1);
(2)根據(jù)圖象得:函數(shù)值y1≥y2的自變量x的取值范圍是:x≥1或﹣3≤x<0.
考點:反比例函數(shù)解析式,一次函數(shù)解析式,反比例函數(shù)的性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

函數(shù)的圖象關(guān)于y軸對稱,我們定義函數(shù)相互為“影像”函數(shù)。
類似地,如果函數(shù)的圖象關(guān)于y軸對稱,那么我們定義函數(shù)互為“影像”函數(shù)。
(1)請寫出函數(shù)的“影像”函數(shù):   ;
(2)函數(shù)     的“影像”函數(shù)是
(3)如果,一條直線與一對“影像”函數(shù)的圖象分別交于點A、B、C(點A、B在第一象限),如果CB: BA=1:2,點C在函數(shù)的“影像”函數(shù)上的對應(yīng)點的橫坐標(biāo)是1,求點B的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,科技小組準(zhǔn)備用材料圍建一個面積為60m2的矩形科技園ABCD,其中一邊AB靠墻,墻長為12m,設(shè)AD的長為m,DC的長為m.

(1)求之間的函數(shù)關(guān)系式;
(2)若圍成矩形科技園ABCD的三邊材料總長不超過26m,材料AD和DC的長都是整米數(shù),求出滿足條件的所有圍建方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

一次函數(shù)的圖像與反比例函數(shù)的圖象交于A(-2,1),B(1,n)兩點.

(1)試確定上述反比例函數(shù)和一次函數(shù)的表達式;
(2)求△OAB的面積.
(3)寫出反比例函數(shù)值大于一次函數(shù)值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,反比例函數(shù)的圖像與一次函數(shù)的圖像交于點A(m,2),點B(-2, n ),一次函數(shù)圖像與y軸的交點為C.求△AOC的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y=(x>0)的圖象和矩形ABCD在第一象限,AD平行于x軸,且AB=2,AD=4,點A的坐標(biāo)為(2,6).

(1)直接寫出B、C、D三點的坐標(biāo);
(2)若將矩形向下平移,矩形的兩個頂點恰好同時落在反比例函數(shù)的圖象上,猜想這是哪兩個點,并求矩形的平移距離和反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知正比例函數(shù)y=ax與反比例函數(shù)的圖象有一個公共點A(1,2).

(1)求這兩個函數(shù)的表達式;
(2)畫出草圖,根據(jù)圖象寫出正比例函數(shù)值大于反比例函數(shù)值時x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知點O是平面直角坐標(biāo)系的原點,直線y=﹣x+m+n與雙曲線交于兩個不同的點A(m,n)(m≥2)和B(p,q).直線y=﹣x+m+n與y軸交于點C,求△OBC的面積S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:計算題

如圖,已知A(-4,2)、B(n,-4)是一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象的兩個交點.

【小題1】求此反比例函數(shù)和一次函數(shù)的解析式
【小題2】根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案