【題目】將一矩形紙片OABC 放在平面直角坐標(biāo)系中, O(0,0) , A(6,0) , C(03) .動(dòng)點(diǎn)Q 從點(diǎn)O 出發(fā)以每秒 1 個(gè)單位長(zhǎng)的速度沿OC 向終點(diǎn)C 運(yùn)動(dòng),運(yùn)動(dòng)秒時(shí),動(dòng)點(diǎn) P 從點(diǎn)A 出發(fā)以相等的速度沿 AO 向終點(diǎn)O 運(yùn)動(dòng)。當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng)。設(shè)點(diǎn) P 的運(yùn)動(dòng)時(shí)間為t (秒).

(1)用含t 的代數(shù)式表示OP,OQ ;

(2)當(dāng)t 1時(shí),如圖 1,將△OPQ 沿 PQ 翻折,點(diǎn)O 恰好落在CB 邊上的點(diǎn) D 處,求點(diǎn) D 的坐標(biāo);

(3)連結(jié) AC ,將△OPQ 沿 PQ 翻折,得到△EPQ ,如圖 2.問(wèn): PQ AC 能否平行? PE AC 能否垂直?若能,求出相應(yīng)的t 值;若不能,說(shuō)明理由.

【答案】1OP 6 t OQ t (2)D(1,3);(3)① PQ 能與 AC 平行,t ,PE 不能與 AC 垂直,理由見(jiàn)解析.

【解析】

(1)O(0,0),A(6,0),C(0,3),可得:OA=6,OC=3,根據(jù)矩形的對(duì)邊平行且相等,可得:AB=OC=3,BC=OA=6,進(jìn)而可得點(diǎn)B的坐標(biāo)為:(6,3),然后根據(jù)P點(diǎn)與Q點(diǎn)的運(yùn)動(dòng)速度與運(yùn)動(dòng)時(shí)間即可用含t的代數(shù)式表示OPOQ;

(2)由翻折的性質(zhì)可知:OPQ≌△DPQ,進(jìn)而可得:DQ=OQ,然后由t=1時(shí),DQ=OQ=,CQ=OCOQ=,然后利用勾股定理可求CD的值,進(jìn)而可求點(diǎn)D的坐標(biāo);

3)① PQ 能與 AC 平行。若 PQ AC ,得到,t ;② PE 不能與 AC 垂直。若 PE AC ,延長(zhǎng)QE OA F,得到,t 3.45 ,即可解答

1)∵O(0,0),A(6,0)C(0,3),

OA=6,OC=3,

∵四邊形OABC是矩形,

AB=OC=3,BC=OA=6,

B(6,3),

∵動(dòng)點(diǎn)QO點(diǎn)以每秒1個(gè)單位長(zhǎng)的速度沿OC向終點(diǎn)C運(yùn)動(dòng),運(yùn)動(dòng)23秒時(shí),動(dòng)點(diǎn)P從點(diǎn)A出發(fā)以相等的速度沿AO向終點(diǎn)O運(yùn)動(dòng).

∴當(dāng)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t()時(shí),

AP=t,OQ t ,

OP=OAAP=6t;

2)當(dāng)t 1時(shí),過(guò) D 點(diǎn)作 DD1 OA ,交OA D1 ,如圖 1

DQ QO=, QC ,

CD 1 , D(1,3)

3)① PQ 能與 AC 平行.若 PQ AC ,如圖 2,

,

,

t ,而0 ≤ t ,

t ,

PE 不能與 AC 垂直。

PE AC ,延長(zhǎng)QE OA F ,如圖 3,

QF ,

EF QF QE QF OQ (t - (t =(

RtEPF RtOCA

,

t 3.45 .

0 ≤ t .

t 不存在.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,給出下列說(shuō)法:①ac>0;②當(dāng)x1時(shí),函數(shù)y隨x的增大而增大;③a+b+c=0;④2a+b=0;⑤當(dāng)y0時(shí),﹣1<x<3.其中,正確的說(shuō)法有(  )個(gè)

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),直線AB分別與x軸、y軸交于BA,與反比例函數(shù)的圖象交于CD,CEx軸于點(diǎn)EtanABO=,OB=4,OE=2

1)求直線AB和反比例函數(shù)的解析式;

2)求OCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖 ,在平面直角坐標(biāo)系中,邊長(zhǎng)為 1 的正方形OA1B1C 的對(duì)角線 A1C OB1 交于點(diǎn) M1,以 M1A1為對(duì)角線作第二個(gè)正方形 A2A1B2M1對(duì)角線 A1M1A2 B2 交于點(diǎn) M 2 ;以 M 2 A1 為對(duì)角線作第三個(gè)正方形 A3 A1B3M 2,對(duì)角線 A1M 2 A3 B3 交于點(diǎn) M 3 ;…,依此類推,那么 M 1 的坐標(biāo)為_____;這樣作的第 n 個(gè)正方形的對(duì)角線交點(diǎn) Mn 的坐標(biāo)為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】典典同學(xué)學(xué)完統(tǒng)計(jì)知識(shí)后,隨機(jī)調(diào)查了她家所在轄區(qū)若干名居民的年齡,將調(diào)查數(shù)據(jù)繪制成如下扇形和條形統(tǒng)計(jì)圖:

請(qǐng)根據(jù)以上不完整的統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題:

(1)扇形統(tǒng)計(jì)圖中a=   ,b=   ;并補(bǔ)全條形統(tǒng)計(jì)圖;

(2)若該轄區(qū)共有居民3500人,請(qǐng)估計(jì)年齡在0~14歲的居民的人數(shù).

(3)一天,典典知道了轄區(qū)內(nèi)60歲以上的部分老人參加了市級(jí)門球比賽,比賽的老人們分成甲、乙兩組,典典很想知道甲乙兩組的比賽結(jié)果,王大爺告訴說(shuō),甲組與乙組的得分和為110,甲組得分不低于乙組得分的1.5倍,甲組得分最少為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知菱形ABCD的邊長(zhǎng)為5,∠DAB=60°.將菱形ABCD繞著A逆時(shí)針旋轉(zhuǎn)得到菱形AEFG,設(shè)∠EAB=α,且0°<α<90°,連接DG、BE、CE、CF.

(1)如圖(1),求證:△AGD≌△AEB;

(2)當(dāng)α=60°時(shí),在圖(2)中畫出圖形并求出線段CF的長(zhǎng);

(3)若∠CEF=90°,在圖(3)中畫出圖形并求出△CEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】沾益區(qū)興隆水果店計(jì)劃用1000元購(gòu)進(jìn)甲、乙兩種新出產(chǎn)的水果140千克,這兩種水果的進(jìn)價(jià)、售價(jià)如下表所示:

進(jìn)價(jià)(元/千克)

售價(jià)(元/千克)

5

8

9

13

(1)這兩種水果各購(gòu)進(jìn)多少千克?

(2)該水果店全部銷售完這批水果時(shí)獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)分別交y軸、x 軸于AB兩點(diǎn),拋物線過(guò)A、B兩點(diǎn).

1)求這個(gè)拋物線的解析式;

2)作垂直x軸的直線x=t,在第一象限交直線AB于點(diǎn)M,交這個(gè)拋物線于點(diǎn)N.求當(dāng)t 取何值時(shí),MN有最大值?最大值是多少?

3)在2)的情況下,以AM、N、D為頂點(diǎn)作平行四邊形,求第四個(gè)頂點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)的圖象與y軸正半軸相交,其頂點(diǎn)坐標(biāo)為(,1),下列結(jié)論:abc0;a=b;a=4c﹣4;方程有兩個(gè)相等的實(shí)數(shù)根,其中正確的結(jié)論是______.(只填序號(hào)即可).

查看答案和解析>>

同步練習(xí)冊(cè)答案