【題目】如圖1,將一塊等腰直角三角板ABC的直角頂點C置于直線l上,圖2是由圖1抽象出的幾何圖形,過A、B兩點分別作直線l的垂線,垂足分別為D、E.
(1)△ACD與△CBE全等嗎?說明你的理由.
(2)猜想線段AD、BE、DE之間的關系.(直接寫出答案)
【答案】(1)詳見解析;(2)AD=BE-DE;
【解析】
(1)觀察圖形,結合已知條件,可知全等三角形為:△ACD與△CBE.根據AAS即可證明;
(2)由(1)知△ACD≌△CBE,根據全等三角形的對應邊相等,得出CD=BE,AD=CE,從而求出線段AD、BE、DE之間的關系.
證明:(1)∵AD⊥CD,BE⊥CD,
∴∠ADC=∠CEB=90°,
又∵∠ACB=90°,
∴∠ACD=∠CBE=90°-∠ECB.
在△ACD與△CBE中,,
∴△ACD≌△CBE(AAS);
(2)AD=BE-DE,理由如下:
∵△ACD≌△CBE,
∴CD=BE,AD=CE,
又∵CE=CD-DE,
∴AD=BE-DE.
科目:初中數學 來源: 題型:
【題目】如圖,等腰△ABC,點D、E、F分別在BC、AB、AC上,且∠BAC=∠ADE=∠ADF=60°.
(1)在圖中找出與∠DAC相等的角,并加以證明;
(2)若AB=6,BE=m,求:AF(用含m的式子表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小張去文具店購買作業(yè)本,作業(yè)本有大、小兩種規(guī)格,大本作業(yè)本的單價比小本作業(yè)本貴0.3元,已知用8元購買大本作業(yè)本的數量與用5元購買小本作業(yè)本的數量相同.
(1)求大本作業(yè)本與小本作業(yè)本每本各多少元?
(2)因作業(yè)需要,小張要再購買一些作業(yè)本,購買小本作業(yè)本的數量是大本作業(yè)本數量的2倍,總費用不超過15元.則大本作業(yè)本最多能購買多少本?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在邊長為 1 的小正方形組成的網格中,有如圖 所示的 A. B 兩點,在格點中任 意放置點 C,恰好能使△ABC 的面積為 1,則這樣的 C 點有 ( )個
A. 5 個B. 6 個C. 7 個D. 8 個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知BD,CE是△ABC的兩條高,直線BD,CE相交于點H.
(1)若∠BAC=100°,求∠DHE的度數;
(2)若△ABC中∠BAC=50°,直接寫出∠DHE的度數是____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點A(1,-1),B(2,3),點P為x軸上一點,當|PA-PB|的值最大時,點P的坐標為( )
A.(-1,0)B.(,0)C.(,0)D.(1,0)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀理解
在平面直角坐標系xoy中,兩條直線l1:y=k1x+b1(k1≠0),l2:y=k2x+b2(k2≠0),①當l1∥l2時,k1=k2,且b1≠b2;②當l1⊥l2時,k1·k2=-1.
類比應用
(1)已知直線l:y=2x-1,若直線l1:y=k1x+b1與直線l平行,且經過點A(-2,1),試求直線l1的表達式;
拓展提升
(2)如圖,在平面直角坐標系xoy中,△ABC的頂點坐標分別為:A(0,2),B(4,0),C(-1,-1),試求出AB邊上的高CD所在直線的表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,O為正方形ABCD對角線的交點,E為AB邊上一點,F為BC邊上一點,△EBF的周長等于BC的長.
(1)若AB=12,BE=3,求EF的長;
(2)求∠EOF的度數;
(3)若OE=OF,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】A、B兩種機器人都被用來搬運化工原料,A型機器人比B型機器人每小時多搬運30kg,A型機器人搬運900kg與B型機器人搬運600kg所用時間相等,兩種機器人每小時分別搬運多少化工原料?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com