【題目】如圖,⊙O的直徑AB=4,C是⊙O上一點(diǎn),連接OC.過點(diǎn)C作CD⊥AB,垂足為D,過點(diǎn)B作BM∥OC,在射線BM上取點(diǎn)E,使BE=BD,連接CE.
(1)當(dāng)∠COB=60°時(shí),直接寫出陰影部分的面積;
(2)求證:CE是⊙O的切線.

【答案】
(1)解:∵OC=OB,∠COB=60°,

∴△BOC是等邊三角形,∴SBOC= 22=

S=S扇形OBC﹣SBOC= 22= ;


(2)證明:∵BM∥OC

∴∠OCB=∠CBE.

∵OC=OB

∴∠OCB=∠OBC

∴∠OBC=∠CBE

又BD=BE,BC=BC

△CBD≌△CBE

∴∠CEB=∠CDB=90°.

∵BM∥OC,

∴∠OCE+∠CEB=180°,

∴∠OCE=180°﹣∠CEB=180°﹣90°=90°,

即OC⊥CE,

∴CE是⊙O的切線.


【解析】(1)圖中陰影部分的面積=扇形的面積﹣三角形的面積;(2)欲證明CE是⊙O的切線,只需推知∠OCE=90°即可.
【考點(diǎn)精析】掌握切線的判定定理和扇形面積計(jì)算公式是解答本題的根本,需要知道切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班共有52名同學(xué),在校廣播操比賽中排成方隊(duì),先把每位同學(xué)都進(jìn)行編號(hào),然后把各自的位置固定下來,如圖,在平面直角坐標(biāo)系中,每個(gè)自然數(shù)都對(duì)應(yīng)著一個(gè)坐標(biāo).例如1的對(duì)應(yīng)點(diǎn)是原點(diǎn),3的對(duì)應(yīng)點(diǎn)是,16的對(duì)應(yīng)點(diǎn)是.那么最后一名同學(xué)的位置對(duì)應(yīng)的坐標(biāo)是____,全校學(xué)生如果排成這樣一個(gè)大方陣,編號(hào)是2015的學(xué)生的對(duì)應(yīng)點(diǎn)的坐標(biāo)是___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解某地九年級(jí)學(xué)生參加消防知識(shí)競(jìng)賽成績(jī)(均為整數(shù)),從中抽取了1%的同學(xué)的競(jìng)賽成績(jī),整理后繪制了如下的頻數(shù)直方圖,請(qǐng)結(jié)合圖形解答下列問題:

(1)這個(gè)問題中的總體是________________;

(2)競(jìng)賽成績(jī)?cè)?/span>84.589.5分這一小組的頻率是_____________;

(3)若競(jìng)賽成績(jī)?cè)?/span>90分以上(90)的同學(xué)可以獲得獎(jiǎng)勵(lì),則估計(jì)該地獲得獎(jiǎng)勵(lì)的九年級(jí)學(xué)生約有_____人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DABC內(nèi)一點(diǎn),CD平分ACB,BDCD,A=ABD,若AC=5,BC=3,則BD的長(zhǎng)為( 。

A. 1 B. C. D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)生騎電動(dòng)車上學(xué)給交通安全帶來隱患,為了解某中學(xué)2 500個(gè)學(xué)生家長(zhǎng)對(duì)“中學(xué)生騎電動(dòng)車上學(xué)”的態(tài)度,中隨機(jī)調(diào)查400個(gè)家長(zhǎng),結(jié)果有360個(gè)家長(zhǎng)持反對(duì)態(tài)度,則下列說法正確的是( )

A. 調(diào)查方式是全面調(diào)查 B. 樣本容量是360

C. 該校只有360個(gè)家長(zhǎng)持反對(duì)態(tài)度 D. 該校約有90%的家長(zhǎng)持反對(duì)態(tài)度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知RtABC中,ACB=90°,CA=CBDAC上一點(diǎn),EBC的延長(zhǎng)線上,且CE=CD,試猜想BDAE的關(guān)系,并說明你猜想的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,A=BCD=90°BC=DC.延長(zhǎng)ADE點(diǎn),使DE=AB.連接CE.求E的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,BAD=α,BCD=180°﹣α,BD平分ABC.

(1)如圖,α=90°,根據(jù)教材中一個(gè)重要性質(zhì)直接可得 DA=CD,這個(gè)性質(zhì)是__________.

(2)問題解決:如圖,求證AD=CD;

(3)問題拓展:如圖,在等腰ABC中,BAC=100°,BD平分ABC,求證:BD+AD=BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,我們把橫 、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).已知點(diǎn)

A0,4),點(diǎn)B軸正半軸上的整點(diǎn),記△AOB內(nèi)部(不包括邊界)的整點(diǎn)個(gè)數(shù)為m.當(dāng)m=3時(shí),點(diǎn)B的橫坐標(biāo)的所有可能值是 ;當(dāng)點(diǎn)B的橫坐標(biāo)為4nn為正整數(shù))時(shí),m= (用含n的代數(shù)式表示.)

查看答案和解析>>

同步練習(xí)冊(cè)答案