【題目】外賣小哥騎車從商家出發(fā),向東騎了3千米到達(dá)小林家,繼續(xù)騎2.5千米到達(dá)小紅家,然后向西騎了10千米到達(dá)小明家,最后返回商家。
(1)以商家為原點(diǎn),以向東的方向?yàn)檎较颍?/span>1個單位長度表示1千米,在數(shù)軸上表示出小明家,小林家,小紅家的位置。(小林家用點(diǎn)A表示,小紅家用點(diǎn)B表示,小明家用點(diǎn)C表示)
(2)小明家距小林家______千米
(3)若外賣小哥在騎車過程中每千米耗時(shí)3分鐘,那么外賣小哥在整個過程中共用時(shí)多久?(假設(shè)外賣小哥一直在勻速行駛,在每戶人家上門送外賣的時(shí)間忽略不計(jì))
【答案】(1)如圖所示,見解析;(2)是7.5千米;(3) 外賣小哥在整個過程中共用時(shí)60分鐘.
【解析】
(1)根據(jù)題目的敘述1個單位長度表示1千米,可知小明家位置是3,小林家位置是5.5,小紅家的位置是-4.5;
(2)根據(jù)(1)得到的數(shù)軸表示,可得到表示小明家與小彬家的兩點(diǎn)之間的距離,利用1個單位長度表示1千米,即可得到實(shí)際距離;
(3)計(jì)算出總路程是20千米,乘以每千米耗時(shí)3分鐘即可求得總時(shí)間.
解:(1) 小明家,小林家,小紅家的位置如圖所示:
(2)根據(jù)數(shù)軸可知:小明家距小林家是7.5個單位長度,因而是7.5千米;
(3)路程是3+2.5+10+4.5=20(千米),
所用時(shí)間是20×3=60(分鐘).
答:外賣小哥在整個過程中共用時(shí)60分鐘.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,以BC為直徑的⊙O交AB于點(diǎn)D,AE平分∠BAC交BC于點(diǎn)E,交CD于點(diǎn)F.且CE=CF.
(1)求證:直線CA是⊙O的切線;
(2)若BD=DC,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對角線AC、BD相交于點(diǎn)O,AE平分交BC于點(diǎn)E,若,
(1)求的度數(shù)。
(2)求的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】剛剛升入初一,學(xué)習(xí)成績優(yōu)異但體育一般的王晴同學(xué)未雨綢繆,已經(jīng)為將來的體育中考做起了準(zhǔn)備.上周末她在家練習(xí)1分鐘跳繩,以每分鐘150下為基準(zhǔn),超過或不足的部分分別用正負(fù)數(shù)來表示,8次成績(單位:下)分別是-10,-8,-5,-2,+2,+8,+3,-4.
(1)成績最好的一次比最差的一次多跳多少下?
(2)求王晴這8次跳繩的平均成績.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝廠生產(chǎn)一種圍巾和手套,每條圍巾的定價(jià)為50元,每雙手套的定價(jià)為20元廠家在開展促銷活動期間,向客戶提供兩種優(yōu)惠方案:
方案①:買一條圍巾送一雙手套;
方案②:圍巾和手套都按定價(jià)的付款.
現(xiàn)某客戶要到該服裝廠購買圍巾20條,手套雙().
(1)若該客戶按方案①購買,則需付款______元(用含的代數(shù)式表示);
若該客戶按方案②購買,則需付款______元(用含的代數(shù)式表示);
(2)若,通過計(jì)算說明按哪種方案購買較便宜.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲、乙兩人以相同路線前往離學(xué)校12千米的地方參加植樹活動.分析甲、乙兩人前往目的地所行駛的路程S(千米)隨時(shí)間t(分鐘)變化的函數(shù)圖象,解決下列問題:
(1)求出甲、乙兩人所行駛的路程S甲、S乙與t之間的關(guān)系式;
(2)甲行駛15分鐘后,甲、乙兩人相距多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線分別于軸、軸交于A、B兩點(diǎn),與直線交于點(diǎn)C(2,4),平行于軸的直線從原點(diǎn)出發(fā),以每秒1個單位長度的速度沿軸向右平移,直線分別交直線AB、直線OC于點(diǎn)D、E,以DE為邊向左側(cè)作正方形DEFG,當(dāng)直線經(jīng)過點(diǎn)A時(shí)停止運(yùn)動,設(shè)直線的運(yùn)動時(shí)間為(秒).
(1)
(2)設(shè)線段DE的長度為求與之間的函數(shù)關(guān)系式;
(3)當(dāng)正方形DEFG的邊GF落在軸上,求出的值;
(4)當(dāng)時(shí),若正方形DEFG和△OCB重疊部分面積為4,則的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=∠C=36°,AB的垂直平分線交BC于點(diǎn)D,交AB于點(diǎn)H,AC的垂直平分線交BC于點(diǎn)E,交AC于點(diǎn)G,連接AD,AE,則下列結(jié)論錯誤的是( )
A. B. AD,AE將∠BAC三等分
C. △ABE≌△ACD D. S△ADH=S△CEG
【答案】A
【解析】試題解析:∵∠B=∠C=36°,∴AB=AC,∠BAC=108°,∵DH垂直平分AB,EG垂直平分AC,∴DB=DA,EA=EC,∴∠B=∠DAB=∠C=∠CAE=36°,∴△BDA∽△BAC,∴,又∵∠ADC=∠B+∠BAD=72°,∠DAC=∠BAC﹣∠BAD=72°,∴∠ADC=∠DAC,∴CD=CA=BA,∴BD=BC﹣CD=BC﹣AB,則=,即=,故A錯誤;
∵∠BAC=108°,∠B=∠DAB=∠C=∠CAE=36°,∴∠DAE=∠BAC﹣∠DAB﹣∠CAE=36°,即∠DAB=∠DAE=∠CAE=36°,∴AD,AE將∠BAC三等分,故B正確;
∵∠BAE=∠BAD+∠DAE=72°,∠CAD=∠CAE+∠DAE=72°,∴∠BAE=∠CAD,在△BAE和△CAD中,∵∠B=∠C,AB=AC,∠BAE=∠CAD,∴△BAE≌△CAD,故C正確;
由△BAE≌△CAD可得S△BAE=S△CAD,即S△BAD+S△ADE=S△CAE+S△ADE,∴S△BAD=S△CAE,又∵DH垂直平分AB,EG垂直平分AC,∴S△ADH=S△ABD,S△CEG=S△CAE,∴S△ADH=S△CEG,故D正確.
故選A.
【題型】單選題
【結(jié)束】
11
【題目】紅細(xì)胞是人體中血液運(yùn)輸氧氣的主要媒介,人體中紅細(xì)胞的直徑約為0.0000077m,將0.0000077用科學(xué)記數(shù)法表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)圖書室計(jì)劃購買了甲、乙兩種故事書.若購買7本甲種故事書和4本乙種故事書需510元;購買3本甲種故事書和5本乙種故事書需350元.
(1)求甲種故事書和乙種故事書的單價(jià);
(2)學(xué)校準(zhǔn)備購買甲、乙兩種故事書共200本,且甲種故事書的數(shù)量不少于乙種故事書的數(shù)量的,請?jiān)O(shè)計(jì)出最省錢的購買方案,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com