【題目】在平面直角坐標系中,二次函數(shù)y=-x2-bx+c的圖象經(jīng)過點A,點B(1,0)和點C(0,3).點D是拋物線的頂點.
(1)求二次函數(shù)的解析式和點D的坐標
(2)直線y=kx+n(k≠0)與拋物線交于點M,N,當△CMN的面積被y軸平分時,求k和n應(yīng)滿足的條件
(3)拋物線的對稱軸與x軸交于點E,將拋物線向下平移m(m>0)個單位,平移后拋物線與y軸交于點C′,連接DC′,OD,是否存在OD平分∠C′DE的情況?若存在,求出m的值;若不薦在,請說明理由.
【答案】(1)y=-x2-2x+3,點D(-1,4);(2)k=-2,n<3;(3)存在,m=.
【解析】
(1)利用待定系數(shù)法求得解析式,利用二次函數(shù)的頂點坐標公式即可求得點D的坐標;
(2)聯(lián)立直線與拋物線的解析式得出關(guān)于x的一元二次方程,根據(jù)要使y軸平分△CMN的面積,則M、N兩點的橫坐標互為相反數(shù),根據(jù)根與系數(shù)的關(guān)系即可得出k值;再根據(jù)而點H在點C之下這一條件,可得出n的取值范圍;
(3)解答本類題目的總體思路在于先假設(shè)存在,若能求出m的值則假設(shè)成立,否則不成立;若存在,首先根據(jù)角平分線的性質(zhì),得出OH= 1,DH= 4;進而設(shè)HG=a,由△DOG的面積建立關(guān)于a的方程組,解之可得點G的坐標,進而求出直線DG的表達式和OC′,與OC作差,即可求出m的值,說明存在OD平分∠C′DE的情況.
(1)y=-x2-bx+c=-x2-bx+3,將點B坐標代入上式得:0=-1-b+3,
解得:b=2,
故拋物線的表達式為:y=-x2-2x+3,
則點A(-3,0)、點D(-1,4);
(2)設(shè)點M、N的橫坐標為x1、x2,
當△CMN的面積被y軸平分時,則x1+x2=0,
將二次函數(shù)表達式與直線表達式聯(lián)立并整理得:
x2+(2+k)x+(n-3)=0,
x1+x2=-(2+k)=0,即k=-2,
而點H在點C之下,故n<3,
故:k=-2,n<3;
(3)存在,理由:
OD平分∠C′DE,即:∠EDO=∠ODC′,
延長DC′交x軸于點G,過點O作OH⊥DG交于H,
∵∠EDO=∠ODC′,
∴OH=OE=1,DH=DE=4,
設(shè)HG=a,則OG=,
S△DOG=OG×DE=OH×GD,
即:4=1×(4+a),
解得:a=,即點G(,0),
∴直線DG的表達式為:y=-x+,
即OC′=,
m=3-=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點C,以點O為圓心,OC長為半徑作,交射線OB于點D,連接CD;
(2)分別以點C,D為圓心,CD長為半徑作弧,交于點M,N;
(3)連接OM,MN.
根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯誤的是( )
A. ∠COM=∠CODB. 若OM=MN,則∠AOB=20°
C. MN∥CDD. MN=3CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在圓O中,弦AB與CD相交于點E,且弧AC與弧BD相等.點D在劣弧AB上,聯(lián)結(jié)CO并延長交線段AB于點F,聯(lián)結(jié)OA、OB.當OA=,且tan∠OAB=.
(1)求弦CD的長;
(2)如果△AOF是直角三角形,求線段EF的長;
(3)如果S△CEF=4S△BOF,求線段AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定:把一次函數(shù)y=kx+b的一次項系數(shù)和常數(shù)項互換得y=bx+k,我們稱y=kx+b和y=bx+k(其中k·b≠0,且|k|≠|(zhì)b|))為互助一次函數(shù),例如:y=-2x+3和y=3x-2就是互助一次函數(shù).如圖1所示,一次函數(shù)y=kx+b和它的互助一次函數(shù)的圖象1,2交于點P,1,2與x軸、y軸分別交于點A,B和點C,D.
(1)如圖1所示,當k=-1,b=5時,直接寫出點P的坐標是_________.
(2)如圖2所示,已知點M(-1,1.5),N(-2,0).試探究隨著k,b值的變化,MP+NP的值是否發(fā)生變化,若不變,求出MP+NP的值;若變化,求出使MP+NP取最小值時點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,點A(-2,m)繞坐標原點O順時針旋轉(zhuǎn)90°后,恰好落在圖中⊙P中的陰影區(qū)域(包括邊界)內(nèi),⊙P的半徑為1,點P的坐標為(3,2),則m的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝店以每件50元的價格購進兩種服裝,已知銷售30件種服裝和40件種服裝共獲利潤1000元,銷售40件種服裝和50件種服裝共獲利潤1300元.
(1)求兩種服裝每件的售價;
(2)若該服裝店準備購進兩種服裝共80件,并規(guī)定種服裝不少于種服裝的,設(shè)購進種服裝件,求利潤(元)與(件)之間的函數(shù)解析式,并求出當取何值時,利潤最大,最大利潤為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形DEFG的邊EF在△ABC的邊BC上,頂點D,G分別在邊AB,AC上,AH⊥BC,垂足為H,AH交DG于點P,已知BC=6,AH=4.當矩形DEFG面積最大時,HP的長是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“機動車行駛到斑馬線要禮讓行人”等交通法規(guī)實施后,某校數(shù)學(xué)課外實踐小組對這些交通法規(guī)的了解情況在全校隨機調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為四種:A.非常了解,B.比較了解,C.基本了解,D.不太了解,實踐小組把此次調(diào)查結(jié)果整理并繪制成下面不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.
請結(jié)合圖中所給信息解答下列問題:
(1)本次共調(diào)查 名學(xué)生;扇形統(tǒng)計圖中C所對應(yīng)扇形的圓心角度數(shù)是 ;
(2)補全條形統(tǒng)計圖;
(3)學(xué)校準備從組內(nèi)的甲、乙、丙、丁四位學(xué)生中隨機抽取兩名學(xué)生參加市區(qū)交通法規(guī)競賽,請用列表或畫樹狀圖的方法求丙和丁兩名學(xué)生同時被選中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,點,,過點作直線,
(1)若,點是線段的中點,點在射線上,當是邊長為5的等腰三角形,共有幾個這樣的點,并嘗試求出點的坐標;
(2)若直線與不平行,在直線上,是否存在點,使得是直角三角形,且,若存在,求出這樣的點坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com