【題目】如圖,在RtABC中,∠B=90°,C=30°,AC=48,點D從點C出發(fā)沿CA方向以每秒4個單位長的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以每秒2個單位長的速度向點B勻速運動,當其中一個點到達終點,另一個點也隨之停止運動,設點D、E運動的時間是t秒(t>0),過點DDFBC于點F,連接DE、EF.

(1)求證:AE=DF;

(2)當四邊形BFDE是矩形時,求t的值;

(3)四邊形AEFD能夠成為菱形嗎?如果能,求出相應的t值;如果不能,說明理由.×

【答案】(1)證明見解析;(2)6s;(2)8s.

【解析】分析:(1)由∠DFC=90°,C=30°,證出DF=2t=AE;

(2)當四邊形BEDF是矩形時,DEF為直角三角形且∠EDF=90°,求出t的值即可;

(3)先證明四邊形AEFD為平行四邊形.得出AB=3,AD=AC-DC=48-4t,若DEF為等邊三角形,則四邊形AEFD為菱形,得出AE=AD,2t=48-4t,求出t的值即可;

詳解:(1)在RtCDF中,∠C=30°,

DF=CD,

DF=4t=2t,

又∵AE=2t,

AE=DF.

(2)當四邊形BFDE是矩形時,有BE=DF,

RtABC中,∠C=30°

AB=AC=×48=24,

BE=AB-AE=24-2t,

24-2t=2t,

t=6.

(3)∵∠B=90°,DFBC

AEDF,AE=DF,

∴四邊形AEFD是平行四邊形,

由(1)知:四邊形AEFD是平行四邊形

則當AE=AD時,四邊形AEFD是菱形

2t=48-4t,

解得t=8,又∵t≤==12,

t=8適合題意,

故當t=8s時,四邊形AEFD是菱形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)題意,解答問題:

(1)如圖1,已知直線y=2x+4x軸、y軸分別交于A、B兩點,求線段AB的長.

(2)如圖2,類比(1)的解題過程,請你通過構(gòu)造直角三角形的方法,求出點M(3,4)與點N(﹣2,﹣1)之間的距離.

(3)在(2)的基礎上,若有一點Dx軸上運動,當滿足DM=DN時,請求出此時點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某人用元購買了套兒童服裝,準備以一定價格出售,如果以每套兒童服裝元的價格為標準,超出的記作正數(shù),不足的記作負數(shù),記錄如下:,,,,(單位:元)

請你幫他計算出當他賣完這八套兒童服裝后,賺了還是賠了,賺(或賠)了多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)________;(2)_______°________________″;

(3)________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】
(1)解方程: + =2
(2)如圖,在⊙O中,OA⊥OB,∠A=20°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,折疊長方形一邊AD,點D落在BC邊的點F處, 已知BC=10厘米,AB=8厘米,求FCEF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩個不同的一次函數(shù)y=ax+by=bx+a的圖象在同一平面直角坐標系內(nèi)的位置可能是(  )

A. A B. B C. C D. D

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3cm,動點P從B點出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達A點停止運動;另一動點Q同時從B點出發(fā),以1cm/s的速度沿著邊BA向A點運動,到達A點停止運動.設P點運動時間為x(s),△BPQ的面積為y(cm2),則y關于x的函數(shù)圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場購進一種每件價格為100元的新商品,在商場試銷發(fā)現(xiàn):銷售單價x(元/件)與每天銷售量y(件)之間滿足如圖所示的關系:
(1)求出y與x之間的函數(shù)關系式;
(2)寫出每天的利潤W與銷售單價x之間的函數(shù)關系式;若你是商場負責人,會將售價定為多少,來保證每天獲得的利潤最大,最大利潤是多少?

查看答案和解析>>

同步練習冊答案